Normalized defining polynomial
\( x^{32} - x^{31} + 31 x^{30} - 27 x^{29} + 430 x^{28} - 322 x^{27} + 3532 x^{26} - 2244 x^{25} + 19175 x^{24} - 10199 x^{23} + 72729 x^{22} - 31933 x^{21} + 198487 x^{20} - 70755 x^{19} + 395067 x^{18} - 112047 x^{17} + 574754 x^{16} - 122995 x^{15} + 602425 x^{14} - 49738 x^{13} + 418484 x^{12} + 205417 x^{11} + 119371 x^{10} + 637343 x^{9} - 115465 x^{8} + 904978 x^{7} - 113658 x^{6} + 500408 x^{5} + 20116 x^{4} + 527946 x^{3} - 601474 x^{2} - 781826 x + 3188011 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1597} a^{17} + \frac{17}{1597} a^{15} + \frac{119}{1597} a^{13} + \frac{442}{1597} a^{11} - \frac{662}{1597} a^{9} - \frac{475}{1597} a^{7} + \frac{714}{1597} a^{5} + \frac{204}{1597} a^{3} + \frac{17}{1597} a - \frac{610}{1597}$, $\frac{1}{1597} a^{18} + \frac{17}{1597} a^{16} + \frac{119}{1597} a^{14} + \frac{442}{1597} a^{12} - \frac{662}{1597} a^{10} - \frac{475}{1597} a^{8} + \frac{714}{1597} a^{6} + \frac{204}{1597} a^{4} + \frac{17}{1597} a^{2} - \frac{610}{1597} a$, $\frac{1}{1597} a^{19} - \frac{170}{1597} a^{15} + \frac{16}{1597} a^{13} - \frac{191}{1597} a^{11} - \frac{400}{1597} a^{9} - \frac{793}{1597} a^{7} - \frac{755}{1597} a^{5} - \frac{257}{1597} a^{3} - \frac{610}{1597} a^{2} - \frac{289}{1597} a + \frac{788}{1597}$, $\frac{1}{1597} a^{20} - \frac{170}{1597} a^{16} + \frac{16}{1597} a^{14} - \frac{191}{1597} a^{12} - \frac{400}{1597} a^{10} - \frac{793}{1597} a^{8} - \frac{755}{1597} a^{6} - \frac{257}{1597} a^{4} - \frac{610}{1597} a^{3} - \frac{289}{1597} a^{2} + \frac{788}{1597} a$, $\frac{1}{1597} a^{21} - \frac{288}{1597} a^{15} - \frac{722}{1597} a^{13} - \frac{319}{1597} a^{11} + \frac{54}{1597} a^{9} - \frac{58}{1597} a^{7} - \frac{249}{1597} a^{5} - \frac{610}{1597} a^{4} - \frac{743}{1597} a^{3} + \frac{788}{1597} a^{2} - \frac{304}{1597} a + \frac{105}{1597}$, $\frac{1}{1597} a^{22} - \frac{288}{1597} a^{16} - \frac{722}{1597} a^{14} - \frac{319}{1597} a^{12} + \frac{54}{1597} a^{10} - \frac{58}{1597} a^{8} - \frac{249}{1597} a^{6} - \frac{610}{1597} a^{5} - \frac{743}{1597} a^{4} + \frac{788}{1597} a^{3} - \frac{304}{1597} a^{2} + \frac{105}{1597} a$, $\frac{1}{1597} a^{23} - \frac{617}{1597} a^{15} + \frac{416}{1597} a^{13} - \frac{410}{1597} a^{11} - \frac{671}{1597} a^{9} + \frac{293}{1597} a^{7} - \frac{610}{1597} a^{6} + \frac{473}{1597} a^{5} + \frac{788}{1597} a^{4} - \frac{641}{1597} a^{3} + \frac{105}{1597} a^{2} + \frac{105}{1597} a - \frac{10}{1597}$, $\frac{1}{3194} a^{24} - \frac{1}{3194} a^{21} - \frac{1}{3194} a^{19} - \frac{1}{3194} a^{18} - \frac{1}{3194} a^{17} - \frac{317}{1597} a^{16} + \frac{441}{3194} a^{15} + \frac{297}{3194} a^{14} + \frac{587}{3194} a^{13} + \frac{745}{3194} a^{12} - \frac{1529}{3194} a^{11} - \frac{9}{3194} a^{10} - \frac{589}{3194} a^{9} - \frac{829}{3194} a^{8} - \frac{881}{3194} a^{7} - \frac{241}{3194} a^{6} + \frac{539}{1597} a^{5} - \frac{235}{3194} a^{4} - \frac{348}{1597} a^{3} - \frac{45}{1597} a^{2} + \frac{588}{1597} a - \frac{283}{3194}$, $\frac{1}{20365011074} a^{25} - \frac{1501605}{20365011074} a^{24} - \frac{2434308}{10182505537} a^{23} - \frac{2666155}{20365011074} a^{22} + \frac{3157305}{20365011074} a^{21} + \frac{4763485}{20365011074} a^{20} + \frac{1663155}{10182505537} a^{19} + \frac{2747323}{10182505537} a^{18} + \frac{4072301}{20365011074} a^{17} - \frac{1472247375}{20365011074} a^{16} - \frac{3781587113}{10182505537} a^{15} + \frac{163100097}{10182505537} a^{14} + \frac{2037683613}{10182505537} a^{13} - \frac{4727234623}{10182505537} a^{12} - \frac{1904851391}{10182505537} a^{11} + \frac{4706013283}{10182505537} a^{10} + \frac{4552234661}{10182505537} a^{9} + \frac{52731932}{10182505537} a^{8} - \frac{2358590198}{10182505537} a^{7} + \frac{6788350383}{20365011074} a^{6} - \frac{5497040269}{20365011074} a^{5} - \frac{3147733271}{20365011074} a^{4} + \frac{1797368280}{10182505537} a^{3} + \frac{926974911}{10182505537} a^{2} + \frac{425026659}{20365011074} a - \frac{3440615917}{20365011074}$, $\frac{1}{20365011074} a^{26} - \frac{1090}{10182505537} a^{24} + \frac{4883765}{20365011074} a^{23} - \frac{2467785}{10182505537} a^{22} + \frac{5427019}{20365011074} a^{21} + \frac{821095}{20365011074} a^{20} - \frac{6228679}{20365011074} a^{19} - \frac{1177802}{10182505537} a^{18} + \frac{1456321}{20365011074} a^{17} - \frac{6022686223}{20365011074} a^{16} + \frac{7277557171}{20365011074} a^{15} - \frac{235974589}{20365011074} a^{14} - \frac{7679092991}{20365011074} a^{13} - \frac{4662210831}{20365011074} a^{12} - \frac{8166482173}{20365011074} a^{11} + \frac{2983864555}{20365011074} a^{10} + \frac{208548055}{20365011074} a^{9} - \frac{356045933}{20365011074} a^{8} - \frac{1527508613}{10182505537} a^{7} + \frac{8090238541}{20365011074} a^{6} - \frac{4429556365}{10182505537} a^{5} - \frac{2553446748}{10182505537} a^{4} + \frac{1015231621}{10182505537} a^{3} - \frac{3241691805}{20365011074} a^{2} - \frac{2555067966}{10182505537} a + \frac{2700243450}{10182505537}$, $\frac{1}{20365011074} a^{27} + \frac{1141819}{10182505537} a^{24} + \frac{1966268}{10182505537} a^{23} - \frac{4611771}{20365011074} a^{22} + \frac{2009668}{10182505537} a^{21} - \frac{1993567}{20365011074} a^{20} - \frac{535681}{20365011074} a^{19} - \frac{379429}{10182505537} a^{18} + \frac{2424285}{10182505537} a^{17} + \frac{5197387595}{20365011074} a^{16} - \frac{213122052}{10182505537} a^{15} + \frac{4993830995}{10182505537} a^{14} - \frac{4398174506}{10182505537} a^{13} - \frac{3825028706}{10182505537} a^{12} - \frac{1285900368}{10182505537} a^{11} + \frac{4859501329}{10182505537} a^{10} - \frac{1185682471}{10182505537} a^{9} - \frac{3885617675}{20365011074} a^{8} + \frac{1605010334}{10182505537} a^{7} - \frac{2617621769}{20365011074} a^{6} - \frac{2480733271}{10182505537} a^{5} - \frac{8502549421}{20365011074} a^{4} + \frac{571747251}{20365011074} a^{3} + \frac{4855830718}{10182505537} a^{2} + \frac{2506335270}{10182505537} a - \frac{2756444425}{20365011074}$, $\frac{1}{20365011074} a^{28} + \frac{30695}{10182505537} a^{24} + \frac{3530613}{20365011074} a^{23} - \frac{1036963}{10182505537} a^{22} + \frac{1150105}{20365011074} a^{21} + \frac{2525821}{20365011074} a^{20} - \frac{1652123}{10182505537} a^{19} + \frac{1118833}{10182505537} a^{18} + \frac{2160719}{20365011074} a^{17} - \frac{17975164}{10182505537} a^{16} + \frac{1050684175}{10182505537} a^{15} - \frac{560146960}{10182505537} a^{14} + \frac{849642177}{10182505537} a^{13} - \frac{159687689}{10182505537} a^{12} - \frac{1051709287}{10182505537} a^{11} + \frac{989937145}{10182505537} a^{10} - \frac{718059771}{20365011074} a^{9} + \frac{3900753526}{10182505537} a^{8} - \frac{7118875913}{20365011074} a^{7} + \frac{2136274697}{10182505537} a^{6} + \frac{2870637883}{20365011074} a^{5} + \frac{539959891}{20365011074} a^{4} - \frac{3431579605}{10182505537} a^{3} + \frac{1357260363}{10182505537} a^{2} + \frac{8256548163}{20365011074} a + \frac{2467560546}{10182505537}$, $\frac{1}{20365011074} a^{29} + \frac{2549945}{20365011074} a^{24} - \frac{49041}{10182505537} a^{23} + \frac{3946485}{20365011074} a^{22} - \frac{6141771}{20365011074} a^{21} - \frac{1910626}{10182505537} a^{20} - \frac{742344}{10182505537} a^{19} + \frac{2857763}{20365011074} a^{18} - \frac{2610612}{10182505537} a^{17} + \frac{2113223875}{10182505537} a^{16} + \frac{4573068684}{10182505537} a^{15} + \frac{1784060204}{10182505537} a^{14} - \frac{4727938424}{10182505537} a^{13} + \frac{3883092824}{10182505537} a^{12} + \frac{1302699096}{10182505537} a^{11} + \frac{1611183751}{20365011074} a^{10} + \frac{4133491760}{10182505537} a^{9} - \frac{2768532437}{20365011074} a^{8} + \frac{492000895}{10182505537} a^{7} + \frac{8486100329}{20365011074} a^{6} + \frac{8161385093}{20365011074} a^{5} - \frac{3532668196}{10182505537} a^{4} + \frac{659013046}{10182505537} a^{3} + \frac{9847901427}{20365011074} a^{2} - \frac{4673528165}{10182505537} a - \frac{2457606866}{10182505537}$, $\frac{1}{20365011074} a^{30} - \frac{477775}{10182505537} a^{24} - \frac{5260369}{20365011074} a^{23} - \frac{2344962}{10182505537} a^{22} - \frac{417462}{10182505537} a^{21} - \frac{189005}{20365011074} a^{20} - \frac{2551643}{10182505537} a^{19} - \frac{5585055}{20365011074} a^{18} - \frac{1801257}{10182505537} a^{17} - \frac{2246622713}{20365011074} a^{16} + \frac{2298129589}{20365011074} a^{15} - \frac{6362492223}{20365011074} a^{14} - \frac{6666539787}{20365011074} a^{13} + \frac{7057304539}{20365011074} a^{12} + \frac{4293602453}{10182505537} a^{11} + \frac{5443049401}{20365011074} a^{10} - \frac{3807522539}{10182505537} a^{9} + \frac{8191209541}{20365011074} a^{8} - \frac{5080159298}{10182505537} a^{7} + \frac{7914659845}{20365011074} a^{6} - \frac{9535085725}{20365011074} a^{5} - \frac{3776495140}{10182505537} a^{4} + \frac{3142002779}{20365011074} a^{3} - \frac{4840592153}{10182505537} a^{2} - \frac{9565093563}{20365011074} a - \frac{3147194315}{10182505537}$, $\frac{1}{20365011074} a^{31} + \frac{1111871}{10182505537} a^{24} + \frac{1002879}{10182505537} a^{23} - \frac{2019144}{10182505537} a^{22} + \frac{809556}{10182505537} a^{21} + \frac{1806450}{10182505537} a^{20} - \frac{1454538}{10182505537} a^{19} + \frac{754105}{20365011074} a^{18} + \frac{2858475}{10182505537} a^{17} + \frac{6285139795}{20365011074} a^{16} + \frac{1362783129}{10182505537} a^{15} + \frac{1163578261}{10182505537} a^{14} - \frac{328115923}{10182505537} a^{13} - \frac{1863025051}{20365011074} a^{12} + \frac{1111166736}{10182505537} a^{11} - \frac{1863393415}{20365011074} a^{10} - \frac{3216140499}{10182505537} a^{9} - \frac{8356542281}{20365011074} a^{8} - \frac{822329061}{10182505537} a^{7} - \frac{2158806916}{10182505537} a^{6} - \frac{1102596524}{10182505537} a^{5} + \frac{3056659710}{10182505537} a^{4} + \frac{1843404252}{10182505537} a^{3} - \frac{5027590995}{20365011074} a^{2} + \frac{4630671186}{10182505537} a - \frac{3566900837}{20365011074}$
Class group and class number
$C_{17}\times C_{816}$, which has order $13872$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19955290291.92932 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{4}$ | R | R | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||