Normalized defining polynomial
\( x^{32} - 35 x^{30} + 562 x^{28} - 5492 x^{26} + 36551 x^{24} - 175781 x^{22} + 633251 x^{20} - 1751511 x^{18} + 3794486 x^{16} - 6572932 x^{14} + 9351378 x^{12} - 11350102 x^{10} + 12349464 x^{8} - 12678924 x^{6} + 12744816 x^{4} - 12751752 x^{2} + 12752041 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5369669698069964755143230114229268544880640000000000000000=2^{32}\cdot 5^{16}\cdot 17^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(171,·)$, $\chi_{340}(129,·)$, $\chi_{340}(139,·)$, $\chi_{340}(269,·)$, $\chi_{340}(271,·)$, $\chi_{340}(21,·)$, $\chi_{340}(279,·)$, $\chi_{340}(281,·)$, $\chi_{340}(29,·)$, $\chi_{340}(159,·)$, $\chi_{340}(161,·)$, $\chi_{340}(291,·)$, $\chi_{340}(39,·)$, $\chi_{340}(299,·)$, $\chi_{340}(309,·)$, $\chi_{340}(151,·)$, $\chi_{340}(191,·)$, $\chi_{340}(321,·)$, $\chi_{340}(199,·)$, $\chi_{340}(329,·)$, $\chi_{340}(331,·)$, $\chi_{340}(79,·)$, $\chi_{340}(81,·)$, $\chi_{340}(249,·)$, $\chi_{340}(99,·)$, $\chi_{340}(101,·)$, $\chi_{340}(209,·)$, $\chi_{340}(109,·)$, $\chi_{340}(111,·)$, $\chi_{340}(121,·)$, $\chi_{340}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3571} a^{17} - \frac{17}{3571} a^{15} + \frac{119}{3571} a^{13} - \frac{442}{3571} a^{11} + \frac{935}{3571} a^{9} - \frac{1122}{3571} a^{7} + \frac{714}{3571} a^{5} - \frac{204}{3571} a^{3} + \frac{17}{3571} a$, $\frac{1}{5702887} a^{18} - \frac{2178327}{5702887} a^{16} + \frac{635757}{5702887} a^{14} + \frac{1570798}{5702887} a^{12} + \frac{2579197}{5702887} a^{10} - \frac{558198}{5702887} a^{8} - \frac{1816925}{5702887} a^{6} - \frac{1942828}{5702887} a^{4} + \frac{2542569}{5702887} a^{2} + \frac{377}{1597}$, $\frac{1}{5702887} a^{19} - \frac{19}{5702887} a^{17} - \frac{2178157}{5702887} a^{15} - \frac{1543352}{5702887} a^{13} - \frac{2147923}{5702887} a^{11} + \frac{229123}{5702887} a^{9} + \frac{660022}{5702887} a^{7} + \frac{2183820}{5702887} a^{5} - \frac{2709964}{5702887} a^{3} - \frac{1542706}{5702887} a$, $\frac{1}{5702887} a^{20} + \frac{2056726}{5702887} a^{16} - \frac{869743}{5702887} a^{14} - \frac{817196}{5702887} a^{12} - \frac{2092117}{5702887} a^{10} + \frac{1460034}{5702887} a^{8} + \frac{1879567}{5702887} a^{6} + \frac{296513}{5702887} a^{4} + \frac{1143009}{5702887} a^{2} + \frac{775}{1597}$, $\frac{1}{5702887} a^{21} - \frac{210}{5702887} a^{17} - \frac{119153}{5702887} a^{15} - \frac{368439}{5702887} a^{13} + \frac{314562}{5702887} a^{11} + \frac{97793}{5702887} a^{9} + \frac{92524}{5702887} a^{7} - \frac{2713832}{5702887} a^{5} - \frac{1255685}{5702887} a^{3} + \frac{2016935}{5702887} a$, $\frac{1}{5702887} a^{22} - \frac{1336863}{5702887} a^{16} + \frac{1974130}{5702887} a^{14} - \frac{585304}{5702887} a^{12} - \frac{45102}{5702887} a^{10} + \frac{2631571}{5702887} a^{8} - \frac{2174653}{5702887} a^{6} + \frac{1358299}{5702887} a^{4} - \frac{114953}{5702887} a^{2} - \frac{680}{1597}$, $\frac{1}{5702887} a^{23} - \frac{174}{5702887} a^{17} + \frac{2061965}{5702887} a^{15} - \frac{1200149}{5702887} a^{13} + \frac{2238608}{5702887} a^{11} - \frac{2199354}{5702887} a^{9} - \frac{2080430}{5702887} a^{7} - \frac{2330771}{5702887} a^{5} + \frac{939067}{5702887} a^{3} - \frac{2516115}{5702887} a$, $\frac{1}{5702887} a^{24} - \frac{576391}{5702887} a^{16} + \frac{1066716}{5702887} a^{14} + \frac{1818884}{5702887} a^{12} + \frac{1755738}{5702887} a^{10} - \frac{2257803}{5702887} a^{8} + \frac{885951}{5702887} a^{6} - \frac{642672}{5702887} a^{4} + \frac{768592}{5702887} a^{2} + \frac{121}{1597}$, $\frac{1}{5702887} a^{25} + \frac{126}{5702887} a^{17} + \frac{2671701}{5702887} a^{15} + \frac{1989763}{5702887} a^{13} - \frac{2137748}{5702887} a^{11} + \frac{714214}{5702887} a^{9} - \frac{1539892}{5702887} a^{7} + \frac{382602}{5702887} a^{5} - \frac{2783136}{5702887} a^{3} - \frac{1172894}{5702887} a$, $\frac{1}{5702887} a^{26} - \frac{2300560}{5702887} a^{16} + \frac{1724799}{5702887} a^{14} - \frac{457251}{5702887} a^{12} + \frac{799951}{5702887} a^{10} + \frac{358412}{5702887} a^{8} + \frac{1199672}{5702887} a^{6} + \frac{2491938}{5702887} a^{4} - \frac{2174916}{5702887} a^{2} + \frac{408}{1597}$, $\frac{1}{5702887} a^{27} + \frac{717}{5702887} a^{17} + \frac{2523299}{5702887} a^{15} - \frac{343864}{5702887} a^{13} - \frac{1250597}{5702887} a^{11} + \frac{2064008}{5702887} a^{9} + \frac{2574689}{5702887} a^{7} - \frac{2530627}{5702887} a^{5} + \frac{1704197}{5702887} a^{3} + \frac{658468}{5702887} a$, $\frac{1}{5702887} a^{28} + \frac{1792720}{5702887} a^{16} + \frac{49327}{5702887} a^{14} + \frac{1658863}{5702887} a^{12} + \frac{515147}{5702887} a^{10} - \frac{2102322}{5702887} a^{8} - \frac{53638}{5702887} a^{6} - \frac{2495442}{5702887} a^{4} + \frac{2560335}{5702887} a^{2} - \frac{416}{1597}$, $\frac{1}{5702887} a^{29} - \frac{711}{5702887} a^{17} + \frac{2023219}{5702887} a^{15} - \frac{752607}{5702887} a^{13} + \frac{510356}{5702887} a^{11} - \frac{2311529}{5702887} a^{9} - \frac{943167}{5702887} a^{7} + \frac{144399}{5702887} a^{5} - \frac{2267396}{5702887} a^{3} + \frac{2243459}{5702887} a$, $\frac{1}{5702887} a^{30} - \frac{1284901}{5702887} a^{16} + \frac{742547}{5702887} a^{14} - \frac{418118}{5702887} a^{12} + \frac{870811}{5702887} a^{10} + \frac{1380145}{5702887} a^{8} - \frac{2836814}{5702887} a^{6} + \frac{2183437}{5702887} a^{4} + \frac{2194839}{5702887} a^{2} - \frac{249}{1597}$, $\frac{1}{5702887} a^{31} + \frac{684}{5702887} a^{17} + \frac{1699150}{5702887} a^{15} - \frac{1411452}{5702887} a^{13} - \frac{2771946}{5702887} a^{11} + \frac{92963}{5702887} a^{9} - \frac{2432773}{5702887} a^{7} + \frac{1926320}{5702887} a^{5} + \frac{2268301}{5702887} a^{3} - \frac{1845782}{5702887} a$
Class group and class number
$C_{2}\times C_{2}\times C_{136}$, which has order $544$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{3571} a^{17} - \frac{17}{3571} a^{15} + \frac{119}{3571} a^{13} - \frac{442}{3571} a^{11} + \frac{935}{3571} a^{9} - \frac{1122}{3571} a^{7} + \frac{714}{3571} a^{5} - \frac{204}{3571} a^{3} + \frac{17}{3571} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10897700797646.188 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16^{2}$ | R | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||