Normalized defining polynomial
\( x^{32} + 29 x^{30} + 382 x^{28} + 3020 x^{26} + 15959 x^{24} + 59435 x^{22} + 160295 x^{20} + 316785 x^{18} + 459050 x^{16} + 483196 x^{14} + 362466 x^{12} + 186394 x^{10} + 67392 x^{8} - 7500 x^{6} + 103392 x^{4} - 510024 x^{2} + 2550409 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5369669698069964755143230114229268544880640000000000000000=2^{32}\cdot 5^{16}\cdot 17^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(131,·)$, $\chi_{340}(129,·)$, $\chi_{340}(11,·)$, $\chi_{340}(269,·)$, $\chi_{340}(19,·)$, $\chi_{340}(21,·)$, $\chi_{340}(281,·)$, $\chi_{340}(29,·)$, $\chi_{340}(31,·)$, $\chi_{340}(161,·)$, $\chi_{340}(91,·)$, $\chi_{340}(179,·)$, $\chi_{340}(309,·)$, $\chi_{340}(311,·)$, $\chi_{340}(59,·)$, $\chi_{340}(319,·)$, $\chi_{340}(321,·)$, $\chi_{340}(71,·)$, $\chi_{340}(329,·)$, $\chi_{340}(209,·)$, $\chi_{340}(211,·)$, $\chi_{340}(121,·)$, $\chi_{340}(219,·)$, $\chi_{340}(101,·)$, $\chi_{340}(81,·)$, $\chi_{340}(259,·)$, $\chi_{340}(231,·)$, $\chi_{340}(109,·)$, $\chi_{340}(239,·)$, $\chi_{340}(339,·)$, $\chi_{340}(249,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1597} a^{17} + \frac{17}{1597} a^{15} + \frac{119}{1597} a^{13} + \frac{442}{1597} a^{11} - \frac{662}{1597} a^{9} - \frac{475}{1597} a^{7} + \frac{714}{1597} a^{5} + \frac{204}{1597} a^{3} + \frac{17}{1597} a$, $\frac{1}{5702887} a^{18} - \frac{2178291}{5702887} a^{16} - \frac{635487}{5702887} a^{14} + \frac{1571890}{5702887} a^{12} - \frac{2576623}{5702887} a^{10} - \frac{554634}{5702887} a^{8} + \frac{1819697}{5702887} a^{6} - \frac{1941748}{5702887} a^{4} - \frac{2542407}{5702887} a^{2} + \frac{843}{3571}$, $\frac{1}{5702887} a^{19} + \frac{19}{5702887} a^{17} + \frac{2178461}{5702887} a^{15} - \frac{1542022}{5702887} a^{13} + \frac{2151381}{5702887} a^{11} + \frac{234557}{5702887} a^{9} - \frac{655006}{5702887} a^{7} + \frac{2186328}{5702887} a^{5} + \frac{2710534}{5702887} a^{3} - \frac{1542668}{5702887} a$, $\frac{1}{5702887} a^{20} - \frac{2057106}{5702887} a^{16} - \frac{873543}{5702887} a^{14} + \frac{799906}{5702887} a^{12} - \frac{2135589}{5702887} a^{10} - \frac{1522734}{5702887} a^{8} + \frac{1829407}{5702887} a^{6} - \frac{316463}{5702887} a^{4} + \frac{1139969}{5702887} a^{2} - \frac{1733}{3571}$, $\frac{1}{5702887} a^{21} - \frac{210}{5702887} a^{17} - \frac{123633}{5702887} a^{15} + \frac{346389}{5702887} a^{13} + \frac{253410}{5702887} a^{11} - \frac{197893}{5702887} a^{9} - \frac{2516}{5702887} a^{7} + \frac{2665322}{5702887} a^{5} - \frac{1266885}{5702887} a^{3} - \frac{2017691}{5702887} a$, $\frac{1}{5702887} a^{22} - \frac{1333783}{5702887} a^{16} - \frac{1939480}{5702887} a^{14} - \frac{417136}{5702887} a^{12} + \frac{485542}{5702887} a^{10} - \frac{2417916}{5702887} a^{8} + \frac{2708263}{5702887} a^{6} + \frac{1573899}{5702887} a^{4} + \frac{148217}{5702887} a^{2} - \frac{1520}{3571}$, $\frac{1}{5702887} a^{23} + \frac{1771}{5702887} a^{17} - \frac{2046610}{5702887} a^{15} - \frac{1167046}{5702887} a^{13} - \frac{2299838}{5702887} a^{11} - \frac{2607179}{5702887} a^{9} + \frac{1340570}{5702887} a^{7} + \frac{2777326}{5702887} a^{5} - \frac{1137343}{5702887} a^{3} - \frac{2534570}{5702887} a$, $\frac{1}{5702887} a^{24} + \frac{555139}{5702887} a^{16} + \frac{811692}{5702887} a^{14} + \frac{2594715}{5702887} a^{12} - \frac{1717446}{5702887} a^{10} + \frac{2700820}{5702887} a^{8} + \frac{2225094}{5702887} a^{6} - \frac{1142496}{5702887} a^{4} + \frac{490384}{5702887} a^{2} - \frac{275}{3571}$, $\frac{1}{5702887} a^{25} + \frac{1634}{5702887} a^{17} + \frac{2807881}{5702887} a^{15} - \frac{540623}{5702887} a^{13} - \frac{1142515}{5702887} a^{11} - \frac{1566525}{5702887} a^{9} + \frac{2807167}{5702887} a^{7} - \frac{2845863}{5702887} a^{5} + \frac{1633104}{5702887} a^{3} + \frac{1557014}{5702887} a$, $\frac{1}{5702887} a^{26} - \frac{2169000}{5702887} a^{16} - \frac{80299}{5702887} a^{14} + \frac{2391262}{5702887} a^{12} - \frac{95149}{5702887} a^{10} + \frac{2320090}{5702887} a^{8} + \frac{676253}{5702887} a^{6} - \frac{2058723}{5702887} a^{4} - \frac{1554571}{5702887} a^{2} + \frac{944}{3571}$, $\frac{1}{5702887} a^{27} - \frac{1403}{5702887} a^{17} + \frac{2551528}{5702887} a^{15} - \frac{1997497}{5702887} a^{13} - \frac{102291}{5702887} a^{11} - \frac{1204487}{5702887} a^{9} - \frac{2412662}{5702887} a^{7} + \frac{123158}{5702887} a^{5} + \frac{1512918}{5702887} a^{3} - \frac{1563492}{5702887} a$, $\frac{1}{5702887} a^{28} - \frac{2546200}{5702887} a^{16} + \frac{1767501}{5702887} a^{14} - \frac{1757890}{5702887} a^{12} - \frac{576198}{5702887} a^{10} + \frac{731355}{5702887} a^{8} - \frac{1735327}{5702887} a^{6} - \frac{2482427}{5702887} a^{4} + \frac{1446749}{5702887} a^{2} + \frac{728}{3571}$, $\frac{1}{5702887} a^{29} - \frac{77}{5702887} a^{17} - \frac{571504}{5702887} a^{15} - \frac{1022264}{5702887} a^{13} + \frac{1341429}{5702887} a^{11} - \frac{2450406}{5702887} a^{9} - \frac{2131708}{5702887} a^{7} + \frac{1931329}{5702887} a^{5} + \frac{1893124}{5702887} a^{3} - \frac{1176389}{5702887} a$, $\frac{1}{5702887} a^{30} + \frac{2786699}{5702887} a^{16} + \frac{1371220}{5702887} a^{14} + \frac{2616332}{5702887} a^{12} - \frac{1249332}{5702887} a^{10} + \frac{784570}{5702887} a^{8} - \frac{524177}{5702887} a^{6} + \frac{653590}{5702887} a^{4} + \frac{2659317}{5702887} a^{2} + \frac{633}{3571}$, $\frac{1}{5702887} a^{31} + \frac{1319}{5702887} a^{17} - \frac{357144}{5702887} a^{15} + \frac{1923558}{5702887} a^{13} - \frac{563700}{5702887} a^{11} + \frac{2673629}{5702887} a^{9} - \frac{538461}{5702887} a^{7} + \frac{2199833}{5702887} a^{5} - \frac{972390}{5702887} a^{3} - \frac{717463}{5702887} a$
Class group and class number
$C_{40}\times C_{1360}$, which has order $54400$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73876734347.55115 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16^{2}$ | R | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||