Normalized defining polynomial
\( x^{32} - 49 x^{28} + 2145 x^{24} - 92561 x^{20} + 3986369 x^{16} - 23695616 x^{12} + 140574720 x^{8} + \cdots + 4294967296 \)
Invariants
| Degree: | $32$ |
| |
| Signature: | $[0, 16]$ |
| |
| Discriminant: |
\(53503546288734745169056818528256000000000000000000000000\)
\(\medspace = 2^{64}\cdot 5^{24}\cdot 17^{16}\)
|
| |
| Root discriminant: | \(55.15\) |
| |
| Galois root discriminant: | $2^{2}5^{3/4}17^{1/2}\approx 55.14573827051111$ | ||
| Ramified primes: |
\(2\), \(5\), \(17\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^3\times C_4$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(680=2^{3}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{680}(1,·)$, $\chi_{680}(647,·)$, $\chi_{680}(137,·)$, $\chi_{680}(271,·)$, $\chi_{680}(273,·)$, $\chi_{680}(67,·)$, $\chi_{680}(407,·)$, $\chi_{680}(409,·)$, $\chi_{680}(543,·)$, $\chi_{680}(33,·)$, $\chi_{680}(679,·)$, $\chi_{680}(169,·)$, $\chi_{680}(171,·)$, $\chi_{680}(307,·)$, $\chi_{680}(441,·)$, $\chi_{680}(443,·)$, $\chi_{680}(577,·)$, $\chi_{680}(579,·)$, $\chi_{680}(69,·)$, $\chi_{680}(203,·)$, $\chi_{680}(339,·)$, $\chi_{680}(341,·)$, $\chi_{680}(477,·)$, $\chi_{680}(101,·)$, $\chi_{680}(611,·)$, $\chi_{680}(613,·)$, $\chi_{680}(103,·)$, $\chi_{680}(237,·)$, $\chi_{680}(239,·)$, $\chi_{680}(373,·)$, $\chi_{680}(509,·)$, $\chi_{680}(511,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{32768}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{9}a^{16}-\frac{2}{9}a^{12}+\frac{4}{9}a^{8}+\frac{1}{9}a^{4}-\frac{2}{9}$, $\frac{1}{36}a^{17}+\frac{7}{36}a^{13}+\frac{13}{36}a^{9}-\frac{17}{36}a^{5}-\frac{11}{36}a$, $\frac{1}{144}a^{18}-\frac{65}{144}a^{14}+\frac{49}{144}a^{10}-\frac{17}{144}a^{6}-\frac{47}{144}a^{2}$, $\frac{1}{576}a^{19}+\frac{79}{576}a^{15}-\frac{95}{576}a^{11}-\frac{17}{576}a^{7}-\frac{191}{576}a^{3}$, $\frac{1}{9184594176}a^{20}-\frac{113}{2304}a^{16}-\frac{863}{2304}a^{12}-\frac{209}{2304}a^{8}+\frac{769}{2304}a^{4}+\frac{11866546}{35877321}$, $\frac{1}{36738376704}a^{21}-\frac{113}{9216}a^{17}-\frac{863}{9216}a^{13}-\frac{2513}{9216}a^{9}+\frac{3073}{9216}a^{5}+\frac{47743867}{143509284}a$, $\frac{1}{146953506816}a^{22}-\frac{113}{36864}a^{18}+\frac{17569}{36864}a^{14}+\frac{15919}{36864}a^{10}-\frac{6143}{36864}a^{6}-\frac{95765417}{574037136}a^{2}$, $\frac{1}{587814027264}a^{23}-\frac{113}{147456}a^{19}+\frac{54433}{147456}a^{15}+\frac{15919}{147456}a^{11}+\frac{30721}{147456}a^{7}+\frac{1052308855}{2296148544}a^{3}$, $\frac{1}{2351256109056}a^{24}-\frac{49}{2351256109056}a^{20}-\frac{9055}{589824}a^{16}+\frac{13871}{589824}a^{12}-\frac{131071}{589824}a^{8}+\frac{1360649765}{3061531392}a^{4}+\frac{3988514}{35877321}$, $\frac{1}{9405024436224}a^{25}-\frac{49}{9405024436224}a^{21}-\frac{9055}{2359296}a^{17}-\frac{575953}{2359296}a^{13}-\frac{131071}{2359296}a^{9}-\frac{4762413019}{12246125568}a^{5}+\frac{39865835}{143509284}a$, $\frac{1}{37620097744896}a^{26}-\frac{49}{37620097744896}a^{22}-\frac{9055}{9437184}a^{18}+\frac{4142639}{9437184}a^{14}-\frac{2490367}{9437184}a^{10}+\frac{7483712549}{48984502272}a^{6}+\frac{39865835}{574037136}a^{2}$, $\frac{1}{150480390979584}a^{27}-\frac{49}{150480390979584}a^{23}-\frac{9055}{37748736}a^{19}+\frac{13579823}{37748736}a^{15}+\frac{16384001}{37748736}a^{11}+\frac{56468214821}{195938009088}a^{7}-\frac{534171301}{2296148544}a^{3}$, $\frac{1}{601921563918336}a^{28}-\frac{49}{601921563918336}a^{24}+\frac{715}{200640521306112}a^{20}+\frac{6895151}{150994944}a^{16}+\frac{16777217}{150994944}a^{12}-\frac{58055716681}{261250678784}a^{8}+\frac{4082044001}{9184594176}a^{4}+\frac{3986320}{35877321}$, $\frac{1}{24\cdots 44}a^{29}-\frac{49}{24\cdots 44}a^{25}+\frac{715}{802562085224448}a^{21}+\frac{6895151}{603979776}a^{17}+\frac{167772161}{603979776}a^{13}-\frac{58055716681}{1045002715136}a^{9}-\frac{14287144351}{36738376704}a^{5}+\frac{39863641}{143509284}a$, $\frac{1}{96\cdots 76}a^{30}-\frac{49}{96\cdots 76}a^{26}+\frac{715}{32\cdots 92}a^{22}+\frac{6895151}{2415919104}a^{18}-\frac{436207615}{2415919104}a^{14}-\frac{1103058431817}{4180010860544}a^{10}+\frac{22451232353}{146953506816}a^{6}+\frac{39863641}{574037136}a^{2}$, $\frac{1}{38\cdots 04}a^{31}-\frac{49}{38\cdots 04}a^{27}+\frac{715}{12\cdots 68}a^{23}+\frac{6895151}{9663676416}a^{19}-\frac{436207615}{9663676416}a^{15}+\frac{7256963289271}{16720043442176}a^{11}+\frac{169404739169}{587814027264}a^{7}-\frac{534173495}{2296148544}a^{3}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
| |
| Relative class number: | data not computed |
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -\frac{181}{587814027264} a^{27} - \frac{25963647845}{587814027264} a^{7} \)
(order $40$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot R \cdot h}{40\cdot\sqrt{53503546288734745169056818528256000000000000000000000000}}\cr\mathstrut & \text{
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{8}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{8}$ | ${\href{/padicField/11.2.0.1}{2} }^{16}$ | ${\href{/padicField/13.4.0.1}{4} }^{8}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{16}$ | ${\href{/padicField/23.4.0.1}{4} }^{8}$ | ${\href{/padicField/29.2.0.1}{2} }^{16}$ | ${\href{/padicField/31.2.0.1}{2} }^{16}$ | ${\href{/padicField/37.4.0.1}{4} }^{8}$ | ${\href{/padicField/41.2.0.1}{2} }^{16}$ | ${\href{/padicField/43.4.0.1}{4} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{8}$ | ${\href{/padicField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.4.32b1.1 | $x^{16} + 4 x^{13} + 4 x^{12} + 6 x^{10} + 12 x^{9} + 8 x^{8} + 4 x^{7} + 12 x^{6} + 16 x^{5} + 13 x^{4} + 4 x^{3} + 8 x^{2} + 12 x + 9$ | $4$ | $4$ | $32$ | $C_4\times C_2^2$ | $$[2, 3]^{4}$$ |
| 2.4.4.32b1.1 | $x^{16} + 4 x^{13} + 4 x^{12} + 6 x^{10} + 12 x^{9} + 8 x^{8} + 4 x^{7} + 12 x^{6} + 16 x^{5} + 13 x^{4} + 4 x^{3} + 8 x^{2} + 12 x + 9$ | $4$ | $4$ | $32$ | $C_4\times C_2^2$ | $$[2, 3]^{4}$$ | |
|
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(17\)
| 17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
| 17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
| 17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |