Normalized defining polynomial
\( x^{32} - 49 x^{28} + 2145 x^{24} - 92561 x^{20} + 3986369 x^{16} - 23695616 x^{12} + 140574720 x^{8} - 822083584 x^{4} + 4294967296 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{9} a^{16} - \frac{2}{9} a^{12} + \frac{4}{9} a^{8} + \frac{1}{9} a^{4} - \frac{2}{9}$, $\frac{1}{36} a^{17} + \frac{7}{36} a^{13} + \frac{13}{36} a^{9} - \frac{17}{36} a^{5} - \frac{11}{36} a$, $\frac{1}{144} a^{18} - \frac{65}{144} a^{14} + \frac{49}{144} a^{10} - \frac{17}{144} a^{6} - \frac{47}{144} a^{2}$, $\frac{1}{576} a^{19} + \frac{79}{576} a^{15} - \frac{95}{576} a^{11} - \frac{17}{576} a^{7} - \frac{191}{576} a^{3}$, $\frac{1}{9184594176} a^{20} - \frac{113}{2304} a^{16} - \frac{863}{2304} a^{12} - \frac{209}{2304} a^{8} + \frac{769}{2304} a^{4} + \frac{11866546}{35877321}$, $\frac{1}{36738376704} a^{21} - \frac{113}{9216} a^{17} - \frac{863}{9216} a^{13} - \frac{2513}{9216} a^{9} + \frac{3073}{9216} a^{5} + \frac{47743867}{143509284} a$, $\frac{1}{146953506816} a^{22} - \frac{113}{36864} a^{18} + \frac{17569}{36864} a^{14} + \frac{15919}{36864} a^{10} - \frac{6143}{36864} a^{6} - \frac{95765417}{574037136} a^{2}$, $\frac{1}{587814027264} a^{23} - \frac{113}{147456} a^{19} + \frac{54433}{147456} a^{15} + \frac{15919}{147456} a^{11} + \frac{30721}{147456} a^{7} + \frac{1052308855}{2296148544} a^{3}$, $\frac{1}{2351256109056} a^{24} - \frac{49}{2351256109056} a^{20} - \frac{9055}{589824} a^{16} + \frac{13871}{589824} a^{12} - \frac{131071}{589824} a^{8} + \frac{1360649765}{3061531392} a^{4} + \frac{3988514}{35877321}$, $\frac{1}{9405024436224} a^{25} - \frac{49}{9405024436224} a^{21} - \frac{9055}{2359296} a^{17} - \frac{575953}{2359296} a^{13} - \frac{131071}{2359296} a^{9} - \frac{4762413019}{12246125568} a^{5} + \frac{39865835}{143509284} a$, $\frac{1}{37620097744896} a^{26} - \frac{49}{37620097744896} a^{22} - \frac{9055}{9437184} a^{18} + \frac{4142639}{9437184} a^{14} - \frac{2490367}{9437184} a^{10} + \frac{7483712549}{48984502272} a^{6} + \frac{39865835}{574037136} a^{2}$, $\frac{1}{150480390979584} a^{27} - \frac{49}{150480390979584} a^{23} - \frac{9055}{37748736} a^{19} + \frac{13579823}{37748736} a^{15} + \frac{16384001}{37748736} a^{11} + \frac{56468214821}{195938009088} a^{7} - \frac{534171301}{2296148544} a^{3}$, $\frac{1}{601921563918336} a^{28} - \frac{49}{601921563918336} a^{24} + \frac{715}{200640521306112} a^{20} + \frac{6895151}{150994944} a^{16} + \frac{16777217}{150994944} a^{12} - \frac{58055716681}{261250678784} a^{8} + \frac{4082044001}{9184594176} a^{4} + \frac{3986320}{35877321}$, $\frac{1}{2407686255673344} a^{29} - \frac{49}{2407686255673344} a^{25} + \frac{715}{802562085224448} a^{21} + \frac{6895151}{603979776} a^{17} + \frac{167772161}{603979776} a^{13} - \frac{58055716681}{1045002715136} a^{9} - \frac{14287144351}{36738376704} a^{5} + \frac{39863641}{143509284} a$, $\frac{1}{9630745022693376} a^{30} - \frac{49}{9630745022693376} a^{26} + \frac{715}{3210248340897792} a^{22} + \frac{6895151}{2415919104} a^{18} - \frac{436207615}{2415919104} a^{14} - \frac{1103058431817}{4180010860544} a^{10} + \frac{22451232353}{146953506816} a^{6} + \frac{39863641}{574037136} a^{2}$, $\frac{1}{38522980090773504} a^{31} - \frac{49}{38522980090773504} a^{27} + \frac{715}{12840993363591168} a^{23} + \frac{6895151}{9663676416} a^{19} - \frac{436207615}{9663676416} a^{15} + \frac{7256963289271}{16720043442176} a^{11} + \frac{169404739169}{587814027264} a^{7} - \frac{534173495}{2296148544} a^{3}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{181}{587814027264} a^{27} - \frac{25963647845}{587814027264} a^{7} \) (order $40$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |