Normalized defining polynomial
\( x^{32} - 15 x^{30} + 134 x^{28} - 793 x^{26} + 3496 x^{24} - 11638 x^{22} + 30241 x^{20} - 60672 x^{18} + 94862 x^{16} - 111861 x^{14} + 99380 x^{12} - 61666 x^{10} + 26973 x^{8} - 6636 x^{6} + 1086 x^{4} - 36 x^{2} + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5241670721450327242974152113348873388724842246701056=2^{32}\cdot 3^{16}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(204=2^{2}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{204}(1,·)$, $\chi_{204}(137,·)$, $\chi_{204}(13,·)$, $\chi_{204}(145,·)$, $\chi_{204}(19,·)$, $\chi_{204}(149,·)$, $\chi_{204}(151,·)$, $\chi_{204}(25,·)$, $\chi_{204}(155,·)$, $\chi_{204}(157,·)$, $\chi_{204}(161,·)$, $\chi_{204}(35,·)$, $\chi_{204}(169,·)$, $\chi_{204}(43,·)$, $\chi_{204}(47,·)$, $\chi_{204}(49,·)$, $\chi_{204}(179,·)$, $\chi_{204}(53,·)$, $\chi_{204}(55,·)$, $\chi_{204}(185,·)$, $\chi_{204}(59,·)$, $\chi_{204}(191,·)$, $\chi_{204}(67,·)$, $\chi_{204}(203,·)$, $\chi_{204}(77,·)$, $\chi_{204}(83,·)$, $\chi_{204}(89,·)$, $\chi_{204}(101,·)$, $\chi_{204}(103,·)$, $\chi_{204}(115,·)$, $\chi_{204}(121,·)$, $\chi_{204}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{4} a^{24} - \frac{1}{4} a^{18} + \frac{1}{4} a^{12} - \frac{1}{4} a^{6} + \frac{1}{4}$, $\frac{1}{4} a^{25} - \frac{1}{4} a^{19} + \frac{1}{4} a^{13} - \frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{4} a^{26} - \frac{1}{4} a^{20} + \frac{1}{4} a^{14} - \frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{27} - \frac{1}{4} a^{21} + \frac{1}{4} a^{15} - \frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{358852} a^{28} + \frac{3023}{27604} a^{26} + \frac{7889}{89713} a^{24} + \frac{3975}{358852} a^{22} + \frac{84017}{358852} a^{20} + \frac{18516}{89713} a^{18} - \frac{132151}{358852} a^{16} + \frac{62195}{358852} a^{14} + \frac{33355}{89713} a^{12} - \frac{114209}{358852} a^{10} - \frac{47527}{358852} a^{8} + \frac{30317}{89713} a^{6} - \frac{138651}{358852} a^{4} - \frac{130001}{358852} a^{2} - \frac{34733}{89713}$, $\frac{1}{358852} a^{29} + \frac{3023}{27604} a^{27} + \frac{7889}{89713} a^{25} + \frac{3975}{358852} a^{23} + \frac{84017}{358852} a^{21} + \frac{18516}{89713} a^{19} - \frac{132151}{358852} a^{17} + \frac{62195}{358852} a^{15} + \frac{33355}{89713} a^{13} - \frac{114209}{358852} a^{11} - \frac{47527}{358852} a^{9} + \frac{30317}{89713} a^{7} - \frac{138651}{358852} a^{5} - \frac{130001}{358852} a^{3} - \frac{34733}{89713} a$, $\frac{1}{17570529103923849716} a^{30} + \frac{7900196601225}{8785264551961924858} a^{28} - \frac{999041555612202613}{8785264551961924858} a^{26} - \frac{1338024522544717873}{17570529103923849716} a^{24} + \frac{3835392211117073523}{8785264551961924858} a^{22} + \frac{3694594152601151133}{8785264551961924858} a^{20} + \frac{4996032877804513497}{17570529103923849716} a^{18} - \frac{147626888757663837}{8785264551961924858} a^{16} - \frac{3820195192929595923}{8785264551961924858} a^{14} + \frac{4830698173074491843}{17570529103923849716} a^{12} + \frac{1838877410860332189}{8785264551961924858} a^{10} + \frac{1778620435172716663}{8785264551961924858} a^{8} + \frac{3463142646295211545}{17570529103923849716} a^{6} - \frac{3220148525250131219}{8785264551961924858} a^{4} + \frac{178917159753353623}{675789580920148066} a^{2} + \frac{889741426692540796}{4392632275980962429}$, $\frac{1}{17570529103923849716} a^{31} + \frac{7900196601225}{8785264551961924858} a^{29} - \frac{999041555612202613}{8785264551961924858} a^{27} - \frac{1338024522544717873}{17570529103923849716} a^{25} + \frac{3835392211117073523}{8785264551961924858} a^{23} + \frac{3694594152601151133}{8785264551961924858} a^{21} + \frac{4996032877804513497}{17570529103923849716} a^{19} - \frac{147626888757663837}{8785264551961924858} a^{17} - \frac{3820195192929595923}{8785264551961924858} a^{15} + \frac{4830698173074491843}{17570529103923849716} a^{13} + \frac{1838877410860332189}{8785264551961924858} a^{11} + \frac{1778620435172716663}{8785264551961924858} a^{9} + \frac{3463142646295211545}{17570529103923849716} a^{7} - \frac{3220148525250131219}{8785264551961924858} a^{5} + \frac{178917159753353623}{675789580920148066} a^{3} + \frac{889741426692540796}{4392632275980962429} a$
Class group and class number
$C_{40}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2996814042794625635}{17570529103923849716} a^{31} + \frac{45062338851799879863}{17570529103923849716} a^{29} - \frac{403224884666926751635}{17570529103923849716} a^{27} + \frac{1195607463592421012995}{8785264551961924858} a^{25} - \frac{10563959124639323765711}{17570529103923849716} a^{23} + \frac{35259854287434061112435}{17570529103923849716} a^{21} - \frac{3534462243250914068935}{675789580920148066} a^{19} + \frac{185099129365526453587327}{17570529103923849716} a^{17} - \frac{290787438949352501206315}{17570529103923849716} a^{15} + \frac{172610670898559810840895}{8785264551961924858} a^{13} - \frac{309268137292545588766747}{17570529103923849716} a^{11} + \frac{194467955203039354540475}{17570529103923849716} a^{9} - \frac{43135277737412749781565}{8785264551961924858} a^{7} + \frac{1681472366991125311839}{1351579161840296132} a^{5} - \frac{3533117998425916751535}{17570529103923849716} a^{3} + \frac{117170196485415320475}{17570529103923849716} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 550321919281.4646 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||