Normalized defining polynomial
\( x^{32} + 2207 x^{16} + 1 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(51922968585348276285304963292200960000000000000000\)\(\medspace = 2^{128}\cdot 5^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $35.78$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 5$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $32$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(160=2^{5}\cdot 5\) | ||
Dirichlet character group: | $\lbrace$$\chi_{160}(1,·)$, $\chi_{160}(131,·)$, $\chi_{160}(129,·)$, $\chi_{160}(9,·)$, $\chi_{160}(11,·)$, $\chi_{160}(141,·)$, $\chi_{160}(19,·)$, $\chi_{160}(21,·)$, $\chi_{160}(151,·)$, $\chi_{160}(29,·)$, $\chi_{160}(159,·)$, $\chi_{160}(39,·)$, $\chi_{160}(41,·)$, $\chi_{160}(49,·)$, $\chi_{160}(51,·)$, $\chi_{160}(31,·)$, $\chi_{160}(61,·)$, $\chi_{160}(139,·)$, $\chi_{160}(69,·)$, $\chi_{160}(71,·)$, $\chi_{160}(79,·)$, $\chi_{160}(81,·)$, $\chi_{160}(89,·)$, $\chi_{160}(91,·)$, $\chi_{160}(99,·)$, $\chi_{160}(101,·)$, $\chi_{160}(109,·)$, $\chi_{160}(111,·)$, $\chi_{160}(59,·)$, $\chi_{160}(119,·)$, $\chi_{160}(121,·)$, $\chi_{160}(149,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{987} a^{16} - \frac{377}{987}$, $\frac{1}{987} a^{17} - \frac{377}{987} a$, $\frac{1}{987} a^{18} - \frac{377}{987} a^{2}$, $\frac{1}{987} a^{19} - \frac{377}{987} a^{3}$, $\frac{1}{987} a^{20} - \frac{377}{987} a^{4}$, $\frac{1}{987} a^{21} - \frac{377}{987} a^{5}$, $\frac{1}{987} a^{22} - \frac{377}{987} a^{6}$, $\frac{1}{987} a^{23} - \frac{377}{987} a^{7}$, $\frac{1}{987} a^{24} - \frac{377}{987} a^{8}$, $\frac{1}{987} a^{25} - \frac{377}{987} a^{9}$, $\frac{1}{987} a^{26} - \frac{377}{987} a^{10}$, $\frac{1}{987} a^{27} - \frac{377}{987} a^{11}$, $\frac{1}{987} a^{28} - \frac{377}{987} a^{12}$, $\frac{1}{987} a^{29} - \frac{377}{987} a^{13}$, $\frac{1}{987} a^{30} - \frac{377}{987} a^{14}$, $\frac{1}{987} a^{31} - \frac{377}{987} a^{15}$
Class group and class number
$C_{17}$, which has order $17$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{5}{987} a^{21} + \frac{10946}{987} a^{5} \) (order $32$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 323273529801.8212 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times C_8$ (as 32T37):
An abelian group of order 32 |
The 32 conjugacy class representatives for $C_2^2\times C_8$ |
Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
5 | Data not computed |