Normalized defining polynomial
\( x^{32} - 5 x^{31} + 22 x^{30} - 73 x^{29} + 220 x^{28} - 519 x^{27} + 1255 x^{26} - 2247 x^{25} + 4413 x^{24} - 6238 x^{23} + 9744 x^{22} - 10830 x^{21} + 13240 x^{20} - 10628 x^{19} + 12053 x^{18} - 5501 x^{17} + 12591 x^{16} - 3062 x^{15} + 17256 x^{14} + 194 x^{13} + 18165 x^{12} + 5659 x^{11} + 13232 x^{10} - 2318 x^{9} - 319 x^{8} - 13445 x^{7} - 6940 x^{6} - 4990 x^{5} + 1466 x^{4} + 2074 x^{3} + 1626 x^{2} + 264 x + 79 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(515207889456069254383620937908064472169867121\)\(\medspace = 7^{16}\cdot 13^{28}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $24.96$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 13$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $\frac{1}{3} a^{29} + \frac{1}{3} a^{28} + \frac{1}{3} a^{27} + \frac{1}{3} a^{26} - \frac{1}{3} a^{24} + \frac{1}{3} a^{21} - \frac{1}{3} a^{20} - \frac{1}{3} a^{18} - \frac{1}{3} a^{17} + \frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{387} a^{30} + \frac{47}{387} a^{29} - \frac{190}{387} a^{28} - \frac{109}{387} a^{27} - \frac{38}{387} a^{26} - \frac{145}{387} a^{25} - \frac{4}{9} a^{24} + \frac{29}{129} a^{23} - \frac{179}{387} a^{22} - \frac{11}{43} a^{21} + \frac{140}{387} a^{20} + \frac{104}{387} a^{19} + \frac{139}{387} a^{18} + \frac{59}{129} a^{17} - \frac{14}{387} a^{16} + \frac{56}{387} a^{15} + \frac{55}{387} a^{14} + \frac{19}{129} a^{13} - \frac{85}{387} a^{12} - \frac{44}{387} a^{11} + \frac{149}{387} a^{10} - \frac{148}{387} a^{9} - \frac{112}{387} a^{8} - \frac{119}{387} a^{7} - \frac{59}{387} a^{6} + \frac{13}{387} a^{5} - \frac{103}{387} a^{4} + \frac{2}{43} a^{3} + \frac{13}{129} a^{2} + \frac{25}{387} a - \frac{38}{387}$, $\frac{1}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{31} + \frac{98712795513458524901771244955570036915150026230522244430707188477555}{6041570040486657938680293083297492589554157290021566683000767932119804573} a^{30} + \frac{121228754910753155662923612321520759840096709461283798291426283784532953}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{29} + \frac{3919541331197629290243888022175219006485158841094257702417095758691637846}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{28} - \frac{1974232948449067371665365032987537195606032411158675474264600068357475349}{6041570040486657938680293083297492589554157290021566683000767932119804573} a^{27} + \frac{442940631966517255221725879630083418085161143341494138700115907624885993}{2013856680162219312893431027765830863184719096673855561000255977373268191} a^{26} - \frac{5101484628867481205082069808564800777007719244515985988106744343188691106}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{25} - \frac{6169728047816107940686838128138270738544168876077369177763188392387219541}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{24} + \frac{784857859375439740664520043905181131910953376515554831129704504416580339}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{23} + \frac{4321345895738681923576778166176426243991057659822865862323188857643657803}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{22} + \frac{1534686409583999858227404494465021519816443937727528865919217536558661809}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{21} + \frac{6915304050351639712304384045905623335207800104285307229456933703135403888}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{20} - \frac{286520331084094536434499287050233730077754949552578535600505801502177420}{6041570040486657938680293083297492589554157290021566683000767932119804573} a^{19} + \frac{961503829173312440222487008484282132694453062368406250099312296857124331}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{18} - \frac{8678112088143920079258380033979598538752293902362491345140987554269009854}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{17} - \frac{6328187400239140390778869138475407137723859570395278836686461456040743}{24862428150150855714733716392170751397342211070047599518521678733003311} a^{16} + \frac{811604452652777595925252861253766090708461443621889728140406526527977436}{2013856680162219312893431027765830863184719096673855561000255977373268191} a^{15} + \frac{4959284153814176018913637465884749003242687325365116430881417066478491034}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{14} + \frac{7953473577258474740509709385847204309042381434306878032753682519826821039}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{13} - \frac{1183094637895091556663157845896350386924435293478804071855212865938203488}{6041570040486657938680293083297492589554157290021566683000767932119804573} a^{12} - \frac{34111856171557385881440776077082795246152583548952610877337525950338725}{671285560054073104297810342588610287728239698891285187000085325791089397} a^{11} - \frac{5141561395011130140519618147185992304924232323272204359219557697078303956}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{10} + \frac{207415374130655698880642170874254718910672246421552304716556526485333017}{421504886545580786419555331392848320201452834187551163930286134799056133} a^{9} + \frac{229434842787857674604759611695471891498768032789539249596942364614314561}{2013856680162219312893431027765830863184719096673855561000255977373268191} a^{8} - \frac{7080017637282973974535393916535141641758170089881487729477134277632719517}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{7} - \frac{7863822310876602459095399436261711688805841901843161751116791974604554699}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{6} + \frac{2644104050468948175798110555010687477876968202840951088480354588929638326}{6041570040486657938680293083297492589554157290021566683000767932119804573} a^{5} + \frac{856475944101239793114733590461524704025961042025170416947205634543911802}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{4} - \frac{2000672211116484955071110638878853998874384010465730259548325392533582354}{6041570040486657938680293083297492589554157290021566683000767932119804573} a^{3} + \frac{2786087472603381630559296012172991621692412650935899373047742010971864718}{18124710121459973816040879249892477768662471870064700049002303796359413719} a^{2} + \frac{1661492937590189995847628865878848624678738457914778080329150747567670168}{18124710121459973816040879249892477768662471870064700049002303796359413719} a - \frac{88952712973756918332976590862151443626133556002853324699503798939538555}{229426710398227516658745306960664275552689517342591139860788655650119161}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1483068056.9314811 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 96 |
The 28 conjugacy class representatives for $C_8.A_4$ |
Character table for $C_8.A_4$ is not computed |
Intermediate fields
\(\Q(\sqrt{13}) \), 4.0.2197.1, 4.0.8281.1, 8.0.68574961.1, 16.0.134308824412163591281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $24{,}\,{\href{/LocalNumberField/2.8.0.1}{8} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | $24{,}\,{\href{/LocalNumberField/5.8.0.1}{8} }$ | R | $24{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $24{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | $24{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }$ | $24{,}\,{\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | $24{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $24{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
7 | Data not computed | ||||||
13 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.13.2t1.a.a | $1$ | $ 13 $ | \(\Q(\sqrt{13}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.91.6t1.j.a | $1$ | $ 7 \cdot 13 $ | 6.6.5274997.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.91.6t1.j.b | $1$ | $ 7 \cdot 13 $ | 6.6.5274997.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.7.3t1.a.a | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.7.3t1.a.b | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 1.13.4t1.a.a | $1$ | $ 13 $ | 4.0.2197.1 | $C_4$ (as 4T1) | $0$ | $-1$ |
* | 1.13.4t1.a.b | $1$ | $ 13 $ | 4.0.2197.1 | $C_4$ (as 4T1) | $0$ | $-1$ |
1.91.12t1.a.a | $1$ | $ 7 \cdot 13 $ | 12.0.61132828589969773.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.91.12t1.a.b | $1$ | $ 7 \cdot 13 $ | 12.0.61132828589969773.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.91.12t1.a.c | $1$ | $ 7 \cdot 13 $ | 12.0.61132828589969773.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.91.12t1.a.d | $1$ | $ 7 \cdot 13 $ | 12.0.61132828589969773.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
2.8281.48.a.a | $2$ | $ 7^{2} \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
2.8281.48.a.b | $2$ | $ 7^{2} \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
2.8281.48.a.c | $2$ | $ 7^{2} \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
2.8281.48.a.d | $2$ | $ 7^{2} \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
* | 2.1183.32t402.a.a | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.1183.32t402.a.b | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.1183.32t402.a.c | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.1183.32t402.a.d | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.1183.32t402.a.e | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.1183.32t402.a.f | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.1183.32t402.a.g | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.1183.32t402.a.h | $2$ | $ 7 \cdot 13^{2}$ | 32.0.515207889456069254383620937908064472169867121.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 3.8281.4t4.b.a | $3$ | $ 7^{2} \cdot 13^{2}$ | 4.0.8281.1 | $A_4$ (as 4T4) | $1$ | $-1$ |
* | 3.637.6t6.a.a | $3$ | $ 7^{2} \cdot 13 $ | 6.2.31213.1 | $A_4\times C_2$ (as 6T6) | $1$ | $-1$ |
* | 3.107653.12t29.a.a | $3$ | $ 7^{2} \cdot 13^{3}$ | 12.8.61132828589969773.1 | $C_4\times A_4$ (as 12T29) | $0$ | $1$ |
* | 3.107653.12t29.a.b | $3$ | $ 7^{2} \cdot 13^{3}$ | 12.8.61132828589969773.1 | $C_4\times A_4$ (as 12T29) | $0$ | $1$ |