Normalized defining polynomial
\( x^{32} - 5 x^{30} + 9 x^{28} - 10 x^{26} + 50 x^{24} - 565 x^{22} + 1746 x^{20} - 1130 x^{18} - 911 x^{16} - 10170 x^{14} + 141426 x^{12} - 411885 x^{10} + 328050 x^{8} - 590490 x^{6} + 4782969 x^{4} - 23914845 x^{2} + 43046721 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(506364211574415072751124736000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(660=2^{2}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{660}(1,·)$, $\chi_{660}(131,·)$, $\chi_{660}(133,·)$, $\chi_{660}(263,·)$, $\chi_{660}(397,·)$, $\chi_{660}(527,·)$, $\chi_{660}(529,·)$, $\chi_{660}(659,·)$, $\chi_{660}(23,·)$, $\chi_{660}(287,·)$, $\chi_{660}(419,·)$, $\chi_{660}(551,·)$, $\chi_{660}(43,·)$, $\chi_{660}(307,·)$, $\chi_{660}(439,·)$, $\chi_{660}(571,·)$, $\chi_{660}(67,·)$, $\chi_{660}(197,·)$, $\chi_{660}(199,·)$, $\chi_{660}(329,·)$, $\chi_{660}(331,·)$, $\chi_{660}(461,·)$, $\chi_{660}(463,·)$, $\chi_{660}(593,·)$, $\chi_{660}(89,·)$, $\chi_{660}(221,·)$, $\chi_{660}(353,·)$, $\chi_{660}(617,·)$, $\chi_{660}(109,·)$, $\chi_{660}(241,·)$, $\chi_{660}(373,·)$, $\chi_{660}(637,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{4}{9} a^{16} - \frac{1}{9} a^{12} - \frac{4}{9} a^{10} + \frac{2}{9} a^{8} + \frac{4}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{19} + \frac{4}{27} a^{17} - \frac{1}{3} a^{15} - \frac{10}{27} a^{13} - \frac{13}{27} a^{11} - \frac{7}{27} a^{9} + \frac{1}{3} a^{7} + \frac{4}{27} a^{5} - \frac{11}{27} a^{3} - \frac{1}{3} a$, $\frac{1}{2511} a^{20} + \frac{1}{81} a^{18} + \frac{2}{9} a^{16} - \frac{16}{81} a^{14} - \frac{10}{81} a^{12} + \frac{1235}{2511} a^{10} + \frac{1}{9} a^{8} - \frac{26}{81} a^{6} + \frac{4}{81} a^{4} - \frac{1}{9} a^{2} - \frac{15}{31}$, $\frac{1}{7533} a^{21} + \frac{1}{243} a^{19} + \frac{2}{27} a^{17} + \frac{65}{243} a^{15} - \frac{10}{243} a^{13} + \frac{1235}{7533} a^{11} + \frac{10}{27} a^{9} + \frac{55}{243} a^{7} + \frac{85}{243} a^{5} + \frac{8}{27} a^{3} + \frac{16}{93} a$, $\frac{1}{22599} a^{22} + \frac{4}{22599} a^{20} - \frac{1}{81} a^{18} + \frac{65}{729} a^{16} - \frac{307}{729} a^{14} + \frac{9605}{22599} a^{12} + \frac{790}{2511} a^{10} + \frac{55}{729} a^{8} + \frac{301}{729} a^{6} - \frac{4}{81} a^{4} + \frac{109}{279} a^{2} + \frac{14}{31}$, $\frac{1}{67797} a^{23} + \frac{4}{67797} a^{21} - \frac{1}{243} a^{19} + \frac{65}{2187} a^{17} - \frac{1036}{2187} a^{15} - \frac{12994}{67797} a^{13} + \frac{3301}{7533} a^{11} + \frac{784}{2187} a^{9} + \frac{1030}{2187} a^{7} - \frac{85}{243} a^{5} + \frac{388}{837} a^{3} + \frac{15}{31} a$, $\frac{1}{3254256} a^{24} - \frac{2}{203391} a^{22} + \frac{1}{22599} a^{20} - \frac{4147}{104976} a^{18} - \frac{1669}{6561} a^{16} + \frac{96245}{203391} a^{14} + \frac{121121}{361584} a^{12} + \frac{81547}{203391} a^{10} + \frac{1672}{6561} a^{8} + \frac{1933}{11664} a^{6} + \frac{83}{837} a^{4} - \frac{23}{93} a^{2} - \frac{223}{496}$, $\frac{1}{9762768} a^{25} - \frac{2}{610173} a^{23} + \frac{1}{67797} a^{21} - \frac{4147}{314928} a^{19} - \frac{1669}{19683} a^{17} + \frac{299636}{610173} a^{15} - \frac{240463}{1084752} a^{13} + \frac{81547}{610173} a^{11} + \frac{1672}{19683} a^{9} - \frac{9731}{34992} a^{7} - \frac{754}{2511} a^{5} - \frac{116}{279} a^{3} - \frac{719}{1488} a$, $\frac{1}{304920532944} a^{26} - \frac{9383}{304920532944} a^{24} - \frac{253}{235278189} a^{22} + \frac{1789523}{304920532944} a^{20} - \frac{423165835}{9836146224} a^{18} + \frac{4032593450}{19057533309} a^{16} - \frac{1768513607}{3764451024} a^{14} - \frac{47548964975}{304920532944} a^{12} + \frac{4937470084}{19057533309} a^{10} + \frac{9999317}{121433904} a^{8} + \frac{961445827}{3764451024} a^{6} + \frac{10586818}{26142021} a^{4} - \frac{2109925}{15491568} a^{2} + \frac{198913}{5163856}$, $\frac{1}{914761598832} a^{27} - \frac{9383}{914761598832} a^{25} - \frac{253}{705834567} a^{23} + \frac{1789523}{914761598832} a^{21} - \frac{423165835}{29508438672} a^{19} + \frac{4032593450}{57172599927} a^{17} - \frac{5532964631}{11293353072} a^{15} - \frac{47548964975}{914761598832} a^{13} + \frac{4937470084}{57172599927} a^{11} + \frac{9999317}{364301712} a^{9} - \frac{2803005197}{11293353072} a^{7} - \frac{15555203}{78426063} a^{5} - \frac{2109925}{46474704} a^{3} + \frac{5362769}{15491568} a$, $\frac{1}{2744284796496} a^{28} + \frac{1}{686071199124} a^{26} + \frac{7747}{152460266472} a^{24} + \frac{40708403}{2744284796496} a^{22} - \frac{1659463}{22131329004} a^{20} + \frac{73428679369}{1372142398248} a^{18} + \frac{25715117473}{304920532944} a^{16} + \frac{10100215297}{686071199124} a^{14} - \frac{220294413469}{1372142398248} a^{12} + \frac{4303727933}{9836146224} a^{10} - \frac{2531248421}{8470014804} a^{8} + \frac{928864601}{1882225512} a^{6} + \frac{43914283}{139424112} a^{4} - \frac{2419447}{11618676} a^{2} + \frac{101}{83288}$, $\frac{1}{8232854389488} a^{29} + \frac{1}{2058213597372} a^{27} + \frac{7747}{457380799416} a^{25} + \frac{40708403}{8232854389488} a^{23} - \frac{1659463}{66393987012} a^{21} + \frac{73428679369}{4116427194744} a^{19} + \frac{25715117473}{914761598832} a^{17} + \frac{10100215297}{2058213597372} a^{15} - \frac{1592436811717}{4116427194744} a^{13} + \frac{4303727933}{29508438672} a^{11} - \frac{2531248421}{25410044412} a^{9} + \frac{2811090113}{5646676536} a^{7} + \frac{43914283}{418272336} a^{5} - \frac{14038123}{34856028} a^{3} + \frac{101}{249864} a$, $\frac{1}{24698563168464} a^{30} + \frac{1}{6174640792116} a^{28} - \frac{1}{686071199124} a^{26} - \frac{1484173}{24698563168464} a^{24} + \frac{58463603}{6174640792116} a^{22} - \frac{550403959}{6174640792116} a^{20} + \frac{4740163973}{94630510224} a^{18} + \frac{2841730302313}{6174640792116} a^{16} + \frac{2258696642215}{6174640792116} a^{14} - \frac{189386401741}{2744284796496} a^{12} + \frac{24882265963}{76230133236} a^{10} + \frac{338306375}{2823338268} a^{8} + \frac{397013297}{3764451024} a^{6} + \frac{23123105}{104568084} a^{4} + \frac{4117319}{11618676} a^{2} + \frac{58169}{322741}$, $\frac{1}{74095689505392} a^{31} + \frac{1}{18523922376348} a^{29} - \frac{1}{2058213597372} a^{27} - \frac{1484173}{74095689505392} a^{25} + \frac{58463603}{18523922376348} a^{23} - \frac{550403959}{18523922376348} a^{21} + \frac{4740163973}{283891530672} a^{19} + \frac{2841730302313}{18523922376348} a^{17} + \frac{2258696642215}{18523922376348} a^{15} - \frac{189386401741}{8232854389488} a^{13} + \frac{24882265963}{228690399708} a^{11} - \frac{2485031893}{8470014804} a^{9} + \frac{397013297}{11293353072} a^{7} - \frac{81444979}{313704252} a^{5} + \frac{4117319}{34856028} a^{3} - \frac{264572}{968223} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{832135}{8232854389488} a^{31} + \frac{166427}{914761598832} a^{29} - \frac{832135}{4116427194744} a^{27} + \frac{4160675}{4116427194744} a^{25} + \frac{638641}{914761598832} a^{23} + \frac{16143419}{457380799416} a^{21} - \frac{94031255}{4116427194744} a^{19} - \frac{151614997}{8232854389488} a^{17} - \frac{94031255}{457380799416} a^{15} - \frac{2092819525}{4116427194744} a^{13} - \frac{94031255}{11293353072} a^{11} + \frac{4160675}{627408504} a^{9} - \frac{832135}{69712056} a^{7} + \frac{499281}{5163856} a^{5} + \frac{5824945}{69712056} a^{3} + \frac{4493529}{5163856} a \) (order $60$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |