Normalized defining polynomial
\( x^{32} - 7 x^{28} - 32 x^{24} + 791 x^{20} - 2945 x^{16} + 64071 x^{12} - 209952 x^{8} - 3720087 x^{4} + 43046721 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{12} + \frac{1}{5} a^{8} - \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{15} a^{17} - \frac{1}{15} a^{13} + \frac{1}{15} a^{9} - \frac{1}{15} a^{5} + \frac{1}{15} a$, $\frac{1}{45} a^{18} - \frac{16}{45} a^{14} - \frac{14}{45} a^{10} - \frac{1}{45} a^{6} + \frac{16}{45} a^{2}$, $\frac{1}{135} a^{19} - \frac{61}{135} a^{15} - \frac{59}{135} a^{11} - \frac{46}{135} a^{7} - \frac{29}{135} a^{3}$, $\frac{1}{1192725} a^{20} - \frac{17}{405} a^{16} - \frac{43}{405} a^{12} + \frac{58}{405} a^{8} - \frac{163}{405} a^{4} + \frac{6681}{14725}$, $\frac{1}{3578175} a^{21} - \frac{17}{1215} a^{17} - \frac{43}{1215} a^{13} + \frac{463}{1215} a^{9} + \frac{242}{1215} a^{5} - \frac{8044}{44175} a$, $\frac{1}{10734525} a^{22} - \frac{17}{3645} a^{18} + \frac{1172}{3645} a^{14} + \frac{463}{3645} a^{10} + \frac{242}{3645} a^{6} - \frac{8044}{132525} a^{2}$, $\frac{1}{32203575} a^{23} - \frac{17}{10935} a^{19} + \frac{1172}{10935} a^{15} + \frac{4108}{10935} a^{11} - \frac{3403}{10935} a^{7} - \frac{8044}{397575} a^{3}$, $\frac{1}{96610725} a^{24} - \frac{7}{96610725} a^{20} + \frac{929}{32805} a^{16} + \frac{7996}{32805} a^{12} - \frac{1}{32805} a^{8} + \frac{791}{1192725} a^{4} - \frac{32}{14725}$, $\frac{1}{289832175} a^{25} - \frac{7}{289832175} a^{21} + \frac{929}{98415} a^{17} - \frac{24809}{98415} a^{13} - \frac{1}{98415} a^{9} + \frac{791}{3578175} a^{5} - \frac{32}{44175} a$, $\frac{1}{869496525} a^{26} - \frac{7}{869496525} a^{22} + \frac{929}{295245} a^{18} - \frac{24809}{295245} a^{14} + \frac{98414}{295245} a^{10} - \frac{3577384}{10734525} a^{6} + \frac{44143}{132525} a^{2}$, $\frac{1}{2608489575} a^{27} - \frac{7}{2608489575} a^{23} + \frac{929}{885735} a^{19} + \frac{270436}{885735} a^{15} - \frac{196831}{885735} a^{11} - \frac{14311909}{32203575} a^{7} + \frac{44143}{397575} a^{3}$, $\frac{1}{7825468725} a^{28} - \frac{7}{7825468725} a^{24} - \frac{32}{7825468725} a^{20} - \frac{32518}{531441} a^{16} + \frac{106288}{531441} a^{12} - \frac{19321354}{96610725} a^{8} + \frac{238513}{1192725} a^{4} - \frac{2952}{14725}$, $\frac{1}{23476406175} a^{29} - \frac{7}{23476406175} a^{25} - \frac{32}{23476406175} a^{21} - \frac{32518}{1594323} a^{17} - \frac{425153}{1594323} a^{13} + \frac{77289371}{289832175} a^{9} - \frac{954212}{3578175} a^{5} + \frac{11773}{44175} a$, $\frac{1}{70429218525} a^{30} - \frac{7}{70429218525} a^{26} - \frac{32}{70429218525} a^{22} - \frac{32518}{4782969} a^{18} - \frac{2019476}{4782969} a^{14} - \frac{212542804}{869496525} a^{10} - \frac{954212}{10734525} a^{6} + \frac{55948}{132525} a^{2}$, $\frac{1}{211287655575} a^{31} - \frac{7}{211287655575} a^{27} - \frac{32}{211287655575} a^{23} - \frac{32518}{14348907} a^{19} - \frac{2019476}{14348907} a^{15} - \frac{1082039329}{2608489575} a^{11} + \frac{9780313}{32203575} a^{7} + \frac{188473}{397575} a^{3}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{44175} a^{21} + \frac{61126}{44175} a \) (order $40$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |