Normalized defining polynomial
\( x^{32} - 2 x^{31} + 3 x^{30} - 2 x^{29} - 12 x^{27} + 17 x^{26} - 24 x^{25} + 3 x^{24} + 8 x^{23} + 101 x^{22} - 128 x^{21} + 208 x^{20} - 34 x^{19} + 39 x^{18} - 726 x^{17} + 877 x^{16} - 1452 x^{15} + 156 x^{14} - 272 x^{13} + 3328 x^{12} - 4096 x^{11} + 6464 x^{10} + 1024 x^{9} + 768 x^{8} - 12288 x^{7} + 17408 x^{6} - 24576 x^{5} - 16384 x^{3} + 49152 x^{2} - 65536 x + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(5037920877776643425304576000000000000000000000000\)\(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{24}\cdot 17^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $33.26$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{11} - \frac{1}{4} a^{10} - \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{3}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{48} a^{20} + \frac{1}{16} a^{18} - \frac{1}{4} a^{17} - \frac{1}{2} a^{16} - \frac{1}{4} a^{15} + \frac{3}{16} a^{14} - \frac{1}{8} a^{13} - \frac{3}{16} a^{12} + \frac{1}{8} a^{11} + \frac{17}{48} a^{10} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} + \frac{1}{16} a^{6} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{96} a^{21} + \frac{1}{32} a^{19} - \frac{1}{8} a^{18} - \frac{1}{4} a^{17} - \frac{1}{8} a^{16} - \frac{13}{32} a^{15} - \frac{1}{16} a^{14} - \frac{3}{32} a^{13} + \frac{1}{16} a^{12} + \frac{17}{96} a^{11} + \frac{3}{16} a^{10} - \frac{1}{8} a^{9} - \frac{7}{16} a^{8} - \frac{15}{32} a^{7} - \frac{1}{2} a^{6} + \frac{15}{32} a^{5} + \frac{5}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{192} a^{22} - \frac{1}{192} a^{20} - \frac{1}{16} a^{19} + \frac{1}{16} a^{18} + \frac{3}{16} a^{17} - \frac{29}{64} a^{16} + \frac{7}{32} a^{15} - \frac{15}{64} a^{14} - \frac{11}{32} a^{13} - \frac{91}{192} a^{12} + \frac{15}{32} a^{11} - \frac{1}{6} a^{10} - \frac{3}{32} a^{9} - \frac{15}{64} a^{8} - \frac{3}{8} a^{7} + \frac{11}{64} a^{6} + \frac{5}{32} a^{5} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3} + \frac{1}{12} a^{2} - \frac{1}{3}$, $\frac{1}{384} a^{23} - \frac{1}{384} a^{21} - \frac{1}{96} a^{20} + \frac{1}{32} a^{19} - \frac{3}{32} a^{18} + \frac{3}{128} a^{17} + \frac{23}{64} a^{16} + \frac{17}{128} a^{15} + \frac{1}{64} a^{14} + \frac{53}{384} a^{13} - \frac{13}{64} a^{12} + \frac{1}{24} a^{11} - \frac{85}{192} a^{10} + \frac{33}{128} a^{9} + \frac{5}{16} a^{8} + \frac{27}{128} a^{7} - \frac{23}{64} a^{6} - \frac{1}{32} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{768} a^{24} - \frac{1}{768} a^{22} - \frac{1}{192} a^{21} - \frac{1}{192} a^{20} - \frac{3}{64} a^{19} - \frac{13}{256} a^{18} - \frac{9}{128} a^{17} - \frac{111}{256} a^{16} - \frac{31}{128} a^{15} - \frac{91}{768} a^{14} - \frac{61}{128} a^{13} - \frac{7}{24} a^{12} - \frac{133}{384} a^{11} + \frac{211}{768} a^{10} + \frac{9}{32} a^{9} - \frac{37}{256} a^{8} + \frac{25}{128} a^{7} - \frac{5}{64} a^{6} + \frac{1}{4} a^{5} + \frac{7}{48} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{1536} a^{25} - \frac{1}{1536} a^{23} - \frac{1}{384} a^{22} - \frac{1}{384} a^{21} - \frac{1}{384} a^{20} - \frac{13}{512} a^{19} + \frac{7}{256} a^{18} + \frac{17}{512} a^{17} + \frac{97}{256} a^{16} - \frac{475}{1536} a^{15} - \frac{13}{256} a^{14} + \frac{11}{48} a^{13} - \frac{277}{768} a^{12} + \frac{403}{1536} a^{11} + \frac{95}{192} a^{10} + \frac{155}{512} a^{9} + \frac{89}{256} a^{8} - \frac{53}{128} a^{7} - \frac{5}{16} a^{6} - \frac{41}{96} a^{5} + \frac{5}{16} a^{4} + \frac{1}{3} a^{3} - \frac{5}{12} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{1373184} a^{26} + \frac{1}{171648} a^{25} + \frac{823}{1373184} a^{24} + \frac{13}{114432} a^{23} + \frac{169}{343296} a^{22} - \frac{1523}{343296} a^{21} + \frac{8953}{1373184} a^{20} - \frac{9469}{228864} a^{19} - \frac{2807}{457728} a^{18} + \frac{10345}{228864} a^{17} + \frac{646541}{1373184} a^{16} + \frac{220865}{686592} a^{15} + \frac{14959}{171648} a^{14} - \frac{39011}{228864} a^{13} + \frac{214163}{1373184} a^{12} - \frac{4669}{21456} a^{11} + \frac{556457}{1373184} a^{10} + \frac{80441}{228864} a^{9} + \frac{937}{114432} a^{8} + \frac{11353}{57216} a^{7} + \frac{413}{2682} a^{6} + \frac{16675}{42912} a^{5} - \frac{127}{10728} a^{4} - \frac{925}{3576} a^{3} - \frac{433}{2682} a^{2} - \frac{85}{2682} a + \frac{157}{1341}$, $\frac{1}{2746368} a^{27} + \frac{253}{915456} a^{25} + \frac{181}{686592} a^{24} - \frac{143}{686592} a^{23} - \frac{1087}{686592} a^{22} + \frac{473}{2746368} a^{21} + \frac{1}{9216} a^{20} - \frac{22951}{915456} a^{19} + \frac{10767}{152576} a^{18} + \frac{278717}{2746368} a^{17} + \frac{50685}{152576} a^{16} - \frac{13447}{38144} a^{15} + \frac{301855}{1373184} a^{14} - \frac{874237}{2746368} a^{13} + \frac{115025}{343296} a^{12} - \frac{1244087}{2746368} a^{11} + \frac{85999}{1373184} a^{10} + \frac{72533}{228864} a^{9} - \frac{743}{38144} a^{8} - \frac{30667}{85824} a^{7} - \frac{521}{2384} a^{6} - \frac{1333}{3576} a^{5} - \frac{1103}{10728} a^{4} - \frac{397}{1341} a^{3} + \frac{1591}{5364} a^{2} + \frac{472}{1341} a - \frac{628}{1341}$, $\frac{1}{38449152} a^{28} + \frac{1}{19224576} a^{27} - \frac{5}{38449152} a^{26} - \frac{1837}{6408192} a^{25} + \frac{1973}{4806144} a^{24} - \frac{1643}{1373184} a^{23} - \frac{11609}{5492736} a^{22} - \frac{16127}{3204096} a^{21} - \frac{90431}{12816384} a^{20} + \frac{111989}{3204096} a^{19} - \frac{677677}{5492736} a^{18} - \frac{1827365}{9612288} a^{17} + \frac{978989}{2403072} a^{16} + \frac{1469}{43008} a^{15} - \frac{3040801}{38449152} a^{14} - \frac{1209101}{19224576} a^{13} + \frac{7150469}{38449152} a^{12} - \frac{44875}{400512} a^{11} + \frac{143827}{457728} a^{10} - \frac{583157}{1602048} a^{9} - \frac{388285}{1201536} a^{8} + \frac{42985}{300384} a^{7} + \frac{20471}{42912} a^{6} + \frac{2737}{7152} a^{5} + \frac{4721}{18774} a^{4} + \frac{937}{37548} a^{3} + \frac{3287}{18774} a^{2} - \frac{843}{2086} a + \frac{373}{1043}$, $\frac{1}{2383847424} a^{29} + \frac{13}{1191923712} a^{28} - \frac{79}{794615808} a^{27} + \frac{25}{132435968} a^{26} + \frac{18209}{74495232} a^{25} - \frac{37327}{66217984} a^{24} + \frac{48191}{37838848} a^{23} + \frac{1527193}{595961856} a^{22} + \frac{1234429}{340549632} a^{21} + \frac{1453511}{595961856} a^{20} + \frac{110473373}{2383847424} a^{19} + \frac{32293267}{595961856} a^{18} + \frac{6813511}{33108992} a^{17} + \frac{58222167}{132435968} a^{16} - \frac{1074248401}{2383847424} a^{15} + \frac{26402679}{132435968} a^{14} + \frac{338108095}{794615808} a^{13} + \frac{13246097}{148990464} a^{12} + \frac{192172733}{595961856} a^{11} - \frac{10804051}{74495232} a^{10} - \frac{34551901}{74495232} a^{9} + \frac{683359}{2660544} a^{8} + \frac{1796261}{6207936} a^{7} - \frac{5493}{73904} a^{6} + \frac{202639}{9311904} a^{5} - \frac{10553}{64666} a^{4} + \frac{31847}{96999} a^{3} + \frac{132326}{290997} a^{2} + \frac{214321}{581994} a - \frac{98162}{290997}$, $\frac{1}{4767694848} a^{30} - \frac{5}{529743872} a^{28} - \frac{83}{1191923712} a^{27} + \frac{89}{595961856} a^{26} + \frac{17813}{1191923712} a^{25} + \frac{1764617}{4767694848} a^{24} + \frac{1286669}{2383847424} a^{23} + \frac{619407}{529743872} a^{22} - \frac{1662463}{794615808} a^{21} - \frac{31592527}{4767694848} a^{20} + \frac{4017521}{264871936} a^{19} - \frac{14768321}{397307904} a^{18} - \frac{235972133}{2383847424} a^{17} - \frac{2139106717}{4767694848} a^{16} - \frac{57621611}{297980928} a^{15} + \frac{1427736349}{4767694848} a^{14} - \frac{650459153}{2383847424} a^{13} + \frac{89377301}{198653952} a^{12} + \frac{34284473}{99326976} a^{11} + \frac{138967555}{297980928} a^{10} - \frac{2848789}{16554496} a^{9} + \frac{698255}{12415872} a^{8} + \frac{2019749}{9311904} a^{7} + \frac{3603437}{9311904} a^{6} + \frac{534445}{9311904} a^{5} - \frac{1309339}{4655952} a^{4} - \frac{712855}{2327976} a^{3} - \frac{463}{193998} a^{2} + \frac{44092}{96999} a + \frac{46559}{96999}$, $\frac{1}{9535389696} a^{31} - \frac{1}{9535389696} a^{29} + \frac{17}{2383847424} a^{28} - \frac{197}{2383847424} a^{27} - \frac{611}{2383847424} a^{26} - \frac{724279}{9535389696} a^{25} - \frac{698153}{1589231616} a^{24} - \frac{978319}{3178463232} a^{23} - \frac{1402873}{4767694848} a^{22} + \frac{2443901}{1059487744} a^{21} - \frac{1527295}{227033088} a^{20} - \frac{12304021}{297980928} a^{19} - \frac{468423601}{4767694848} a^{18} - \frac{2141092141}{9535389696} a^{17} + \frac{18693379}{1191923712} a^{16} + \frac{283693441}{9535389696} a^{15} - \frac{254467377}{529743872} a^{14} + \frac{1418833}{113516544} a^{13} + \frac{343342645}{1191923712} a^{12} - \frac{32342927}{66217984} a^{11} + \frac{5905783}{33108992} a^{10} - \frac{10560919}{148990464} a^{9} - \frac{32321279}{74495232} a^{8} - \frac{3720133}{18623808} a^{7} + \frac{8143193}{18623808} a^{6} - \frac{2264785}{9311904} a^{5} - \frac{471277}{1551984} a^{4} - \frac{14351}{96999} a^{3} - \frac{363739}{1163988} a^{2} + \frac{195613}{581994} a - \frac{47933}{96999}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{47}{4571136} a^{31} + \frac{5633}{340549632} a^{30} - \frac{4229}{529743872} a^{29} + \frac{43541}{2383847424} a^{28} + \frac{941}{397307904} a^{27} - \frac{38225}{198653952} a^{26} - \frac{1284011}{4767694848} a^{25} - \frac{11399}{297980928} a^{24} - \frac{158635}{681099264} a^{23} - \frac{904063}{1191923712} a^{22} + \frac{6664165}{4767694848} a^{21} + \frac{1070059}{397307904} a^{20} + \frac{3985}{4272128} a^{19} + \frac{6172933}{2383847424} a^{18} + \frac{4386553}{1589231616} a^{17} - \frac{5523821}{794615808} a^{16} - \frac{11069533}{681099264} a^{15} - \frac{83371}{10642176} a^{14} - \frac{2893957}{148990464} a^{13} - \frac{25379927}{1191923712} a^{12} + \frac{8495279}{297980928} a^{11} + \frac{583663}{8277248} a^{10} + \frac{251537}{8277248} a^{9} + \frac{1776961}{18623808} a^{8} + \frac{906827}{6207936} a^{7} - \frac{4195}{73904} a^{6} - \frac{288347}{1163988} a^{5} - \frac{43541}{1163988} a^{4} - \frac{293827}{1163988} a^{3} - \frac{441451}{1163988} a^{2} - \frac{1051}{9387} a + \frac{163204}{290997} \) (order $30$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 190465720691.2432 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_4\times D_4$ (as 32T204):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2\times C_4\times D_4$ |
Character table for $C_2\times C_4\times D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5 | Data not computed | ||||||
$17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |