Normalized defining polynomial
\( x^{32} - 3x^{28} + 14x^{24} + 60x^{20} - 95x^{16} + 960x^{12} + 3584x^{8} - 12288x^{4} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(492412573934221323439865515488952975360000000000000000\) \(\medspace = 2^{64}\cdot 5^{16}\cdot 29^{8}\cdot 769^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(47.63\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}5^{1/2}29^{1/2}769^{1/2}\approx 1335.6945758668035$ | ||
Ramified primes: | \(2\), \(5\), \(29\), \(769\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{13}-\frac{1}{2}a$, $\frac{1}{4}a^{18}+\frac{1}{4}a^{14}-\frac{1}{2}a^{10}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{19}-\frac{3}{8}a^{15}-\frac{1}{4}a^{11}-\frac{1}{2}a^{7}+\frac{1}{8}a^{3}$, $\frac{1}{16}a^{20}-\frac{3}{16}a^{16}-\frac{1}{8}a^{12}-\frac{1}{4}a^{8}+\frac{1}{16}a^{4}$, $\frac{1}{32}a^{21}-\frac{3}{32}a^{17}+\frac{7}{16}a^{13}-\frac{1}{8}a^{9}+\frac{1}{32}a^{5}$, $\frac{1}{64}a^{22}-\frac{3}{64}a^{18}+\frac{7}{32}a^{14}-\frac{1}{16}a^{10}-\frac{31}{64}a^{6}$, $\frac{1}{128}a^{23}-\frac{3}{128}a^{19}+\frac{7}{64}a^{15}+\frac{15}{32}a^{11}+\frac{33}{128}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{256256}a^{24}+\frac{5069}{256256}a^{20}-\frac{13873}{128128}a^{16}-\frac{1003}{5824}a^{12}+\frac{29537}{256256}a^{8}+\frac{2025}{16016}a^{4}+\frac{16}{1001}$, $\frac{1}{512512}a^{25}+\frac{5069}{512512}a^{21}-\frac{13873}{256256}a^{17}+\frac{4821}{11648}a^{13}-\frac{226719}{512512}a^{9}-\frac{13991}{32032}a^{5}-\frac{985}{2002}a$, $\frac{1}{1025024}a^{26}+\frac{5069}{1025024}a^{22}-\frac{13873}{512512}a^{18}+\frac{4821}{23296}a^{14}-\frac{226719}{1025024}a^{10}-\frac{13991}{64064}a^{6}+\frac{1017}{4004}a^{2}$, $\frac{1}{2050048}a^{27}+\frac{5069}{2050048}a^{23}-\frac{13873}{1025024}a^{19}-\frac{18475}{46592}a^{15}+\frac{798305}{2050048}a^{11}-\frac{13991}{128128}a^{7}+\frac{1017}{8008}a^{3}$, $\frac{1}{127102976}a^{28}+\frac{125}{127102976}a^{24}-\frac{9723}{698368}a^{20}+\frac{200975}{31775744}a^{16}-\frac{51106911}{127102976}a^{12}-\frac{73531}{152768}a^{8}+\frac{31305}{70928}a^{4}+\frac{10071}{31031}$, $\frac{1}{254205952}a^{29}+\frac{125}{254205952}a^{25}-\frac{9723}{1396736}a^{21}+\frac{200975}{63551488}a^{17}-\frac{51106911}{254205952}a^{13}+\frac{79237}{305536}a^{9}-\frac{39623}{141856}a^{5}+\frac{10071}{62062}a$, $\frac{1}{508411904}a^{30}+\frac{125}{508411904}a^{26}-\frac{9723}{2793472}a^{22}+\frac{200975}{127102976}a^{18}-\frac{51106911}{508411904}a^{14}-\frac{226299}{611072}a^{10}-\frac{39623}{283712}a^{6}-\frac{51991}{124124}a^{2}$, $\frac{1}{1016823808}a^{31}+\frac{125}{1016823808}a^{27}-\frac{9723}{5586944}a^{23}+\frac{200975}{254205952}a^{19}+\frac{457304993}{1016823808}a^{15}-\frac{226299}{1222144}a^{11}-\frac{39623}{567424}a^{7}+\frac{72133}{248248}a^{3}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{84}$, which has order $84$ (assuming GRH)
Relative class number: $84$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{28471}{254205952} a^{29} + \frac{40597}{254205952} a^{25} - \frac{28265}{127102976} a^{21} - \frac{286001}{63551488} a^{17} + \frac{927657}{254205952} a^{13} + \frac{92107}{15887872} a^{9} - \frac{16767}{76384} a^{5} + \frac{43984}{31031} a \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{3}{26624}a^{28}+\frac{89}{186368}a^{24}+\frac{111}{93184}a^{20}+\frac{43}{3584}a^{16}+\frac{489}{14336}a^{12}+\frac{1035}{23296}a^{8}+\frac{1011}{1456}a^{4}+\frac{38}{91}$, $\frac{1}{585728}a^{28}-\frac{2293}{4100096}a^{24}-\frac{639}{2050048}a^{20}-\frac{131}{78848}a^{16}-\frac{9277}{315392}a^{12}-\frac{2517}{128128}a^{8}-\frac{2571}{8008}a^{4}-\frac{1740}{1001}$, $\frac{80435}{508411904}a^{30}-\frac{40217}{508411904}a^{26}+\frac{9103}{23109632}a^{22}+\frac{813885}{127102976}a^{18}-\frac{5445357}{508411904}a^{14}+\frac{115779}{7943936}a^{10}+\frac{310175}{992992}a^{6}-\frac{8218}{4433}a^{2}$, $\frac{7175}{72630272}a^{30}+\frac{28471}{254205952}a^{29}-\frac{9813}{72630272}a^{26}-\frac{40597}{254205952}a^{25}+\frac{1491}{3301376}a^{22}+\frac{28265}{127102976}a^{21}+\frac{84937}{18157568}a^{18}+\frac{286001}{63551488}a^{17}-\frac{786329}{72630272}a^{14}-\frac{927657}{254205952}a^{13}+\frac{1015}{70928}a^{10}-\frac{92107}{15887872}a^{9}+\frac{68051}{283712}a^{6}+\frac{16767}{76384}a^{5}-\frac{18563}{17732}a^{2}-\frac{43984}{31031}a-1$, $\frac{7175}{72630272}a^{30}+\frac{8509}{127102976}a^{29}-\frac{9813}{72630272}a^{26}+\frac{13593}{127102976}a^{25}+\frac{1491}{3301376}a^{22}+\frac{74163}{63551488}a^{21}+\frac{84937}{18157568}a^{18}+\frac{8823}{2444288}a^{17}-\frac{786329}{72630272}a^{14}+\frac{97873}{9777152}a^{13}+\frac{1015}{70928}a^{10}+\frac{164057}{7943936}a^{9}+\frac{68051}{283712}a^{6}+\frac{235325}{992992}a^{5}-\frac{18563}{17732}a^{2}-\frac{8461}{31031}a-1$, $\frac{7175}{72630272}a^{30}+\frac{1173}{127102976}a^{29}-\frac{9813}{72630272}a^{26}+\frac{44449}{127102976}a^{25}+\frac{1491}{3301376}a^{22}+\frac{20291}{63551488}a^{21}+\frac{84937}{18157568}a^{18}+\frac{152107}{31775744}a^{17}-\frac{786329}{72630272}a^{14}+\frac{1553973}{127102976}a^{13}+\frac{1015}{70928}a^{10}+\frac{146593}{3971968}a^{9}+\frac{68051}{283712}a^{6}+\frac{7159}{90272}a^{5}-\frac{18563}{17732}a^{2}+\frac{55871}{62062}a-1$, $\frac{6091}{254205952}a^{31}-\frac{8509}{127102976}a^{29}-\frac{35}{292864}a^{28}-\frac{43261}{254205952}a^{27}-\frac{13593}{127102976}a^{25}-\frac{969}{2050048}a^{24}-\frac{7279}{18157568}a^{23}-\frac{74163}{63551488}a^{21}-\frac{2231}{1025024}a^{20}+\frac{25667}{63551488}a^{19}-\frac{8823}{2444288}a^{17}-\frac{387}{39424}a^{16}-\frac{4288741}{254205952}a^{15}-\frac{97873}{9777152}a^{13}-\frac{5129}{157696}a^{12}-\frac{1500535}{63551488}a^{11}-\frac{164057}{7943936}a^{9}-\frac{37581}{256256}a^{8}-\frac{9065}{141856}a^{7}-\frac{235325}{992992}a^{5}-\frac{839}{2002}a^{4}-\frac{231841}{248248}a^{3}+\frac{8461}{31031}a-\frac{608}{1001}$, $\frac{45055}{1016823808}a^{31}-\frac{15311}{127102976}a^{30}+\frac{2521}{19554304}a^{29}-\frac{16495}{63551488}a^{28}+\frac{11705}{92438528}a^{27}-\frac{1423}{127102976}a^{26}+\frac{46289}{254205952}a^{25}+\frac{161}{825344}a^{24}+\frac{30887}{72630272}a^{23}-\frac{781}{5777408}a^{22}+\frac{6099}{127102976}a^{21}+\frac{6855}{31775744}a^{20}+\frac{620985}{254205952}a^{19}-\frac{189187}{31775744}a^{18}+\frac{470747}{63551488}a^{17}-\frac{208977}{15887872}a^{16}+\frac{9094303}{1016823808}a^{15}+\frac{374849}{127102976}a^{14}-\frac{81677}{36315136}a^{13}+\frac{2155185}{63551488}a^{12}+\frac{548115}{63551488}a^{11}-\frac{346607}{31775744}a^{10}+\frac{219357}{7943936}a^{9}-\frac{10095}{283712}a^{8}+\frac{27575}{141856}a^{7}-\frac{777807}{1985984}a^{6}+\frac{139959}{248248}a^{5}-\frac{200217}{248248}a^{4}+\frac{1251}{4774}a^{3}+\frac{22167}{17732}a^{2}-\frac{67201}{62062}a+\frac{121141}{31031}$, $\frac{3959}{1016823808}a^{31}-\frac{80435}{508411904}a^{30}+\frac{7175}{36315136}a^{29}+\frac{43}{1444352}a^{28}-\frac{23827}{145260544}a^{27}+\frac{40217}{508411904}a^{26}-\frac{9813}{36315136}a^{25}-\frac{4363}{15887872}a^{24}-\frac{39693}{46219264}a^{23}-\frac{9103}{23109632}a^{22}+\frac{1491}{1650688}a^{21}-\frac{6593}{7943936}a^{20}-\frac{696247}{254205952}a^{19}-\frac{813885}{127102976}a^{18}+\frac{84937}{9078784}a^{17}-\frac{3607}{567424}a^{16}-\frac{17451689}{1016823808}a^{15}+\frac{5445357}{508411904}a^{14}-\frac{786329}{36315136}a^{13}-\frac{49333}{1444352}a^{12}-\frac{184913}{4539392}a^{11}-\frac{115779}{7943936}a^{10}+\frac{1015}{35464}a^{9}-\frac{27889}{248248}a^{8}-\frac{30909}{305536}a^{7}-\frac{310175}{992992}a^{6}+\frac{68051}{141856}a^{5}-\frac{206127}{496496}a^{4}-\frac{84457}{124124}a^{3}+\frac{8218}{4433}a^{2}-\frac{27429}{8866}a-\frac{39843}{31031}$, $\frac{77433}{1016823808}a^{31}-\frac{15311}{127102976}a^{30}-\frac{33207}{254205952}a^{29}+\frac{16495}{63551488}a^{28}-\frac{117371}{1016823808}a^{27}-\frac{1423}{127102976}a^{26}+\frac{95877}{254205952}a^{25}-\frac{161}{825344}a^{24}-\frac{147481}{508411904}a^{23}-\frac{781}{5777408}a^{22}+\frac{33519}{127102976}a^{21}-\frac{6855}{31775744}a^{20}+\frac{892511}{254205952}a^{19}-\frac{189187}{31775744}a^{18}-\frac{365161}{63551488}a^{17}+\frac{208977}{15887872}a^{16}-\frac{1727585}{145260544}a^{15}+\frac{374849}{127102976}a^{14}+\frac{8049001}{254205952}a^{13}-\frac{2155185}{63551488}a^{12}+\frac{145099}{63551488}a^{11}-\frac{346607}{31775744}a^{10}-\frac{63303}{7943936}a^{9}+\frac{10095}{283712}a^{8}+\frac{391757}{1985984}a^{7}-\frac{777807}{1985984}a^{6}-\frac{2739}{11284}a^{5}+\frac{200217}{248248}a^{4}-\frac{187695}{124124}a^{3}+\frac{22167}{17732}a^{2}+\frac{175081}{62062}a-\frac{121141}{31031}$, $\frac{3959}{1016823808}a^{31}+\frac{80435}{508411904}a^{30}+\frac{7175}{36315136}a^{29}-\frac{43}{1444352}a^{28}-\frac{23827}{145260544}a^{27}-\frac{40217}{508411904}a^{26}-\frac{9813}{36315136}a^{25}+\frac{4363}{15887872}a^{24}-\frac{39693}{46219264}a^{23}+\frac{9103}{23109632}a^{22}+\frac{1491}{1650688}a^{21}+\frac{6593}{7943936}a^{20}-\frac{696247}{254205952}a^{19}+\frac{813885}{127102976}a^{18}+\frac{84937}{9078784}a^{17}+\frac{3607}{567424}a^{16}-\frac{17451689}{1016823808}a^{15}-\frac{5445357}{508411904}a^{14}-\frac{786329}{36315136}a^{13}+\frac{49333}{1444352}a^{12}-\frac{184913}{4539392}a^{11}+\frac{115779}{7943936}a^{10}+\frac{1015}{35464}a^{9}+\frac{27889}{248248}a^{8}-\frac{30909}{305536}a^{7}+\frac{310175}{992992}a^{6}+\frac{68051}{141856}a^{5}+\frac{206127}{496496}a^{4}-\frac{84457}{124124}a^{3}-\frac{8218}{4433}a^{2}-\frac{27429}{8866}a+\frac{39843}{31031}$, $\frac{34899}{1016823808}a^{31}-\frac{16845}{254205952}a^{29}+\frac{135959}{1016823808}a^{27}+\frac{134807}{254205952}a^{25}+\frac{234669}{508411904}a^{23}-\frac{25187}{127102976}a^{21}+\frac{107971}{36315136}a^{19}+\frac{247077}{63551488}a^{17}+\frac{4885235}{1016823808}a^{15}+\frac{1007701}{36315136}a^{13}+\frac{2704789}{63551488}a^{11}+\frac{469863}{15887872}a^{9}+\frac{102111}{3971968}a^{7}+\frac{118103}{496496}a^{5}+\frac{12202}{31031}a^{3}+\frac{5031}{2387}a$, $\frac{110401}{1016823808}a^{31}-\frac{111469}{508411904}a^{30}+\frac{3021}{36315136}a^{29}+\frac{65389}{1016823808}a^{27}+\frac{62999}{508411904}a^{26}-\frac{47921}{254205952}a^{25}+\frac{216191}{508411904}a^{23}-\frac{13561}{23109632}a^{22}+\frac{3021}{127102976}a^{21}+\frac{1785527}{254205952}a^{19}-\frac{1351307}{127102976}a^{18}-\frac{62331}{63551488}a^{17}+\frac{9066529}{1016823808}a^{15}+\frac{7003699}{508411904}a^{14}-\frac{6697989}{254205952}a^{13}+\frac{191213}{5777408}a^{11}-\frac{801327}{31775744}a^{10}+\frac{30479}{7943936}a^{9}+\frac{1288909}{3971968}a^{7}-\frac{313541}{496496}a^{6}+\frac{105659}{992992}a^{5}-\frac{52193}{124124}a^{3}+\frac{20365}{8866}a^{2}-\frac{110039}{62062}a$, $\frac{1571}{11554816}a^{31}-\frac{1}{16384}a^{30}-\frac{40511}{254205952}a^{29}+\frac{101}{292864}a^{28}-\frac{41929}{127102976}a^{27}+\frac{3}{16384}a^{26}-\frac{68163}{254205952}a^{25}+\frac{2927}{2050048}a^{24}-\frac{709}{3971968}a^{23}-\frac{7}{8192}a^{22}-\frac{191929}{127102976}a^{21}+\frac{4673}{1025024}a^{20}+\frac{11131}{2269696}a^{19}-\frac{15}{4096}a^{18}-\frac{471281}{63551488}a^{17}+\frac{1333}{39424}a^{16}-\frac{237109}{11554816}a^{15}+\frac{95}{16384}a^{14}+\frac{149335}{36315136}a^{13}+\frac{15887}{157696}a^{12}-\frac{1868963}{63551488}a^{11}-\frac{15}{256}a^{10}-\frac{243861}{3971968}a^{9}+\frac{60351}{256256}a^{8}+\frac{38629}{248248}a^{7}-\frac{7}{32}a^{6}-\frac{419733}{992992}a^{5}+\frac{14477}{8008}a^{4}-\frac{44901}{19096}a^{3}+\frac{7}{4}a^{2}+\frac{35545}{31031}a+\frac{3446}{1001}$, $\frac{11019}{508411904}a^{30}-\frac{10877}{127102976}a^{29}-\frac{893}{2269696}a^{28}+\frac{74383}{508411904}a^{26}+\frac{1277}{11554816}a^{25}-\frac{23}{1222144}a^{24}-\frac{7313}{23109632}a^{22}-\frac{43271}{63551488}a^{21}-\frac{16827}{7943936}a^{20}+\frac{162189}{127102976}a^{18}-\frac{154279}{31775744}a^{17}-\frac{80919}{3971968}a^{16}+\frac{4004907}{508411904}a^{14}+\frac{2288323}{127102976}a^{13}+\frac{220709}{15887872}a^{12}-\frac{108113}{31775744}a^{10}-\frac{546827}{15887872}a^{9}-\frac{305387}{3971968}a^{8}+\frac{150725}{992992}a^{6}-\frac{129193}{496496}a^{5}-\frac{635759}{496496}a^{4}+\frac{3532}{4433}a^{2}+\frac{104035}{62062}a+\frac{107032}{31031}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2768304842151.426 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 2768304842151.426 \cdot 84}{8\cdot\sqrt{492412573934221323439865515488952975360000000000000000}}\cr\approx \mathstrut & 0.244408630772899 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{8}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.2.0.1}{2} }^{16}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.4.0.1}{4} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{16}$ | ${\href{/padicField/37.8.0.1}{8} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $16$ | $4$ | $4$ | $32$ | |||
Deg $16$ | $4$ | $4$ | $32$ | ||||
\(5\) | 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(29\) | 29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(769\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |