Normalized defining polynomial
\( x^{32} - 16 x^{31} + 152 x^{30} - 1040 x^{29} + 5660 x^{28} - 25648 x^{27} + 99848 x^{26} - 340496 x^{25} + 1032070 x^{24} - 2809040 x^{23} + 6920264 x^{22} - 15521584 x^{21} + 31841628 x^{20} - 59944080 x^{19} + 103821240 x^{18} - 165701168 x^{17} + 243967235 x^{16} - 331507312 x^{15} + 412923000 x^{14} - 461181840 x^{13} + 521407068 x^{12} - 811933616 x^{11} + 915761288 x^{10} + 616194800 x^{9} - 2353432250 x^{8} + 200955248 x^{7} + 3097052168 x^{6} - 1972643120 x^{5} - 538044580 x^{4} + 656503280 x^{3} - 66006472 x^{2} - 29392688 x + 46058146 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(486797299958529611528622959063550881784243829894751113445376=2^{128}\cdot 3^{16}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(391,·)$, $\chi_{672}(265,·)$, $\chi_{672}(659,·)$, $\chi_{672}(533,·)$, $\chi_{672}(155,·)$, $\chi_{672}(29,·)$, $\chi_{672}(419,·)$, $\chi_{672}(293,·)$, $\chi_{672}(295,·)$, $\chi_{672}(169,·)$, $\chi_{672}(559,·)$, $\chi_{672}(433,·)$, $\chi_{672}(55,·)$, $\chi_{672}(323,·)$, $\chi_{672}(197,·)$, $\chi_{672}(587,·)$, $\chi_{672}(461,·)$, $\chi_{672}(463,·)$, $\chi_{672}(337,·)$, $\chi_{672}(83,·)$, $\chi_{672}(601,·)$, $\chi_{672}(223,·)$, $\chi_{672}(97,·)$, $\chi_{672}(491,·)$, $\chi_{672}(365,·)$, $\chi_{672}(629,·)$, $\chi_{672}(631,·)$, $\chi_{672}(505,·)$, $\chi_{672}(251,·)$, $\chi_{672}(125,·)$, $\chi_{672}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9}$, $\frac{1}{27} a^{12} + \frac{1}{27} a^{9} - \frac{4}{27} a^{6} + \frac{8}{27} a^{3} + \frac{10}{27}$, $\frac{1}{27} a^{13} + \frac{1}{27} a^{10} - \frac{4}{27} a^{7} - \frac{1}{27} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{8}{27} a - \frac{1}{3}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{11} - \frac{1}{27} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{4}{27} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{11}{27} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{7}{27} a^{3} + \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{4}{27}$, $\frac{1}{81} a^{16} + \frac{1}{81} a^{15} - \frac{1}{81} a^{14} - \frac{1}{81} a^{12} - \frac{1}{81} a^{11} + \frac{4}{81} a^{10} + \frac{1}{27} a^{9} + \frac{4}{81} a^{8} + \frac{4}{27} a^{7} + \frac{7}{81} a^{6} - \frac{8}{81} a^{5} + \frac{11}{81} a^{4} + \frac{13}{27} a^{3} - \frac{10}{81} a^{2} + \frac{35}{81} a + \frac{34}{81}$, $\frac{1}{81} a^{17} + \frac{1}{81} a^{15} + \frac{1}{81} a^{14} - \frac{1}{81} a^{13} - \frac{4}{81} a^{11} - \frac{1}{81} a^{10} + \frac{4}{81} a^{9} - \frac{1}{81} a^{8} - \frac{5}{81} a^{7} + \frac{1}{27} a^{6} - \frac{8}{81} a^{5} + \frac{1}{81} a^{4} - \frac{34}{81} a^{3} + \frac{4}{9} a^{2} - \frac{1}{81} a - \frac{10}{81}$, $\frac{1}{81} a^{18} - \frac{1}{81} a^{9} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{27} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{22}{81}$, $\frac{1}{81} a^{19} - \frac{1}{81} a^{10} + \frac{1}{9} a^{6} - \frac{2}{27} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{31}{81} a - \frac{4}{9}$, $\frac{1}{243} a^{20} - \frac{1}{243} a^{19} - \frac{1}{243} a^{18} + \frac{1}{81} a^{15} - \frac{1}{81} a^{14} - \frac{1}{81} a^{13} + \frac{1}{81} a^{12} - \frac{13}{243} a^{11} + \frac{7}{243} a^{10} - \frac{2}{243} a^{9} - \frac{2}{81} a^{8} + \frac{10}{81} a^{7} - \frac{13}{81} a^{6} - \frac{7}{81} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{115}{243} a^{2} + \frac{55}{243} a - \frac{77}{243}$, $\frac{1}{243} a^{21} + \frac{1}{243} a^{19} - \frac{1}{243} a^{18} - \frac{1}{81} a^{15} - \frac{1}{81} a^{14} + \frac{2}{243} a^{12} - \frac{1}{81} a^{11} - \frac{10}{243} a^{10} - \frac{8}{243} a^{9} + \frac{4}{81} a^{8} + \frac{4}{27} a^{7} - \frac{1}{27} a^{6} - \frac{8}{81} a^{5} + \frac{10}{81} a^{4} + \frac{2}{243} a^{3} - \frac{10}{81} a^{2} + \frac{104}{243} a + \frac{46}{243}$, $\frac{1}{243} a^{22} + \frac{1}{243} a^{18} - \frac{1}{81} a^{15} - \frac{4}{243} a^{13} - \frac{4}{81} a^{10} + \frac{5}{243} a^{9} - \frac{7}{81} a^{7} + \frac{1}{9} a^{6} - \frac{37}{243} a^{4} - \frac{28}{81} a^{3} + \frac{20}{81} a + \frac{107}{243}$, $\frac{1}{243} a^{23} + \frac{1}{243} a^{19} + \frac{1}{81} a^{15} + \frac{2}{243} a^{14} - \frac{1}{81} a^{12} - \frac{2}{81} a^{11} - \frac{10}{243} a^{10} + \frac{1}{27} a^{9} + \frac{1}{27} a^{8} + \frac{4}{27} a^{7} + \frac{7}{81} a^{6} + \frac{38}{243} a^{5} + \frac{10}{81} a^{4} + \frac{13}{27} a^{3} + \frac{22}{81} a^{2} + \frac{104}{243} a + \frac{34}{81}$, $\frac{1}{729} a^{24} - \frac{1}{729} a^{21} - \frac{1}{243} a^{19} - \frac{4}{729} a^{18} - \frac{10}{729} a^{15} + \frac{1}{81} a^{14} - \frac{8}{729} a^{12} + \frac{1}{81} a^{11} + \frac{10}{243} a^{10} - \frac{20}{729} a^{9} - \frac{4}{81} a^{8} + \frac{2}{27} a^{7} + \frac{65}{729} a^{6} + \frac{8}{81} a^{5} - \frac{1}{81} a^{4} - \frac{332}{729} a^{3} + \frac{10}{81} a^{2} + \frac{85}{243} a - \frac{146}{729}$, $\frac{1}{729} a^{25} - \frac{1}{729} a^{22} + \frac{2}{729} a^{19} - \frac{1}{243} a^{18} - \frac{1}{729} a^{16} + \frac{1}{81} a^{14} + \frac{10}{729} a^{13} + \frac{1}{81} a^{12} + \frac{1}{81} a^{11} - \frac{26}{729} a^{10} + \frac{13}{243} a^{9} - \frac{4}{81} a^{8} - \frac{88}{729} a^{7} + \frac{11}{81} a^{6} + \frac{8}{81} a^{5} + \frac{10}{729} a^{4} + \frac{25}{81} a^{3} + \frac{37}{81} a^{2} + \frac{163}{729} a + \frac{7}{243}$, $\frac{1}{729} a^{26} - \frac{1}{729} a^{23} - \frac{1}{729} a^{20} + \frac{1}{243} a^{18} - \frac{1}{729} a^{17} - \frac{8}{729} a^{14} - \frac{1}{81} a^{13} - \frac{14}{729} a^{11} - \frac{1}{81} a^{10} - \frac{10}{243} a^{9} + \frac{38}{729} a^{8} + \frac{13}{81} a^{7} - \frac{2}{27} a^{6} + \frac{100}{729} a^{5} + \frac{10}{81} a^{4} - \frac{26}{81} a^{3} + \frac{238}{729} a^{2} + \frac{8}{81} a + \frac{77}{243}$, $\frac{1}{729} a^{27} + \frac{1}{729} a^{21} + \frac{1}{243} a^{19} + \frac{1}{729} a^{18} - \frac{1}{81} a^{14} + \frac{11}{729} a^{12} - \frac{1}{81} a^{11} - \frac{10}{243} a^{10} + \frac{13}{243} a^{9} + \frac{4}{81} a^{8} - \frac{2}{27} a^{7} + \frac{10}{243} a^{6} - \frac{8}{81} a^{5} + \frac{1}{81} a^{4} + \frac{128}{729} a^{3} - \frac{10}{81} a^{2} - \frac{85}{243} a - \frac{125}{729}$, $\frac{1}{2187} a^{28} + \frac{1}{2187} a^{27} - \frac{1}{2187} a^{26} + \frac{1}{2187} a^{25} - \frac{2}{2187} a^{23} - \frac{2}{2187} a^{21} - \frac{2}{2187} a^{20} + \frac{2}{729} a^{19} + \frac{4}{2187} a^{18} - \frac{8}{2187} a^{17} - \frac{10}{2187} a^{16} - \frac{2}{243} a^{15} + \frac{2}{2187} a^{14} - \frac{8}{729} a^{13} - \frac{22}{2187} a^{12} - \frac{55}{2187} a^{11} - \frac{98}{2187} a^{10} + \frac{10}{243} a^{9} - \frac{38}{2187} a^{8} - \frac{202}{2187} a^{7} - \frac{80}{729} a^{6} + \frac{2}{2187} a^{5} - \frac{50}{729} a^{4} + \frac{95}{2187} a^{3} - \frac{739}{2187} a^{2} - \frac{1063}{2187} a - \frac{587}{2187}$, $\frac{1}{2187} a^{29} + \frac{1}{2187} a^{27} - \frac{1}{2187} a^{26} - \frac{1}{2187} a^{25} + \frac{1}{2187} a^{24} - \frac{4}{2187} a^{23} - \frac{2}{2187} a^{22} + \frac{2}{2187} a^{20} - \frac{2}{2187} a^{19} + \frac{2}{729} a^{18} + \frac{1}{2187} a^{17} - \frac{8}{2187} a^{16} + \frac{17}{2187} a^{15} + \frac{7}{2187} a^{14} - \frac{25}{2187} a^{13} - \frac{8}{729} a^{12} - \frac{73}{2187} a^{11} - \frac{82}{2187} a^{10} + \frac{10}{2187} a^{9} - \frac{62}{2187} a^{8} + \frac{70}{2187} a^{7} - \frac{364}{2187} a^{6} - \frac{362}{2187} a^{5} - \frac{214}{2187} a^{4} - \frac{275}{729} a^{3} + \frac{287}{729} a^{2} - \frac{280}{2187} a - \frac{1090}{2187}$, $\frac{1}{2029995739801110497294064068056443278710130635865834523} a^{30} - \frac{5}{676665246600370165764688022685481092903376878621944841} a^{29} - \frac{414516777451659042202746285114911806713003543193586}{2029995739801110497294064068056443278710130635865834523} a^{28} + \frac{233973595431291070141427228765299508769071179839245}{2029995739801110497294064068056443278710130635865834523} a^{27} + \frac{400414227146053235431918256138190673750918487499527}{2029995739801110497294064068056443278710130635865834523} a^{26} + \frac{599574225492554658551142457385630226492820128950350}{2029995739801110497294064068056443278710130635865834523} a^{25} + \frac{1357433412644356677255306125700386266466380293420350}{2029995739801110497294064068056443278710130635865834523} a^{24} - \frac{4070800810217640873735220518324852240951562985257283}{2029995739801110497294064068056443278710130635865834523} a^{23} + \frac{1365470079099744256130174232501193736955288516873689}{676665246600370165764688022685481092903376878621944841} a^{22} - \frac{869660303859313314414103712472782079094041164656822}{2029995739801110497294064068056443278710130635865834523} a^{21} - \frac{1237787880572813446252958244685364687749789592095829}{2029995739801110497294064068056443278710130635865834523} a^{20} + \frac{2373645500677357345049326152782917931392401147598312}{676665246600370165764688022685481092903376878621944841} a^{19} + \frac{2031187873054583714187630041268357148416204403862710}{2029995739801110497294064068056443278710130635865834523} a^{18} - \frac{658913773085007865744890239169478421065869317581871}{2029995739801110497294064068056443278710130635865834523} a^{17} - \frac{1413569370773075690910389119303248425324328175835458}{2029995739801110497294064068056443278710130635865834523} a^{16} - \frac{27546010659238863028532151473998378833799414027923572}{2029995739801110497294064068056443278710130635865834523} a^{15} + \frac{5244374955798573950948600301130580087689269145060022}{2029995739801110497294064068056443278710130635865834523} a^{14} + \frac{2140355576404130735604001225830654370368482011652717}{676665246600370165764688022685481092903376878621944841} a^{13} + \frac{34985162481429919148874882362724835976159252793185006}{2029995739801110497294064068056443278710130635865834523} a^{12} + \frac{34110923214316966791495068551238125957241429219729999}{2029995739801110497294064068056443278710130635865834523} a^{11} - \frac{44249185273311906754493497207991242210352146316351594}{2029995739801110497294064068056443278710130635865834523} a^{10} - \frac{112668512245933032296560540590164763464201145417069785}{2029995739801110497294064068056443278710130635865834523} a^{9} + \frac{3649933048771358249921336108153713650534238613738920}{2029995739801110497294064068056443278710130635865834523} a^{8} + \frac{139493555000799997536111759447135785893227453708876527}{2029995739801110497294064068056443278710130635865834523} a^{7} - \frac{27878553200806751905583032195973697861300804119604794}{2029995739801110497294064068056443278710130635865834523} a^{6} - \frac{124427658081845204406670651301737194136666442497047250}{2029995739801110497294064068056443278710130635865834523} a^{5} + \frac{66796080314832225031682943820992918083991380610357623}{676665246600370165764688022685481092903376878621944841} a^{4} - \frac{109245976086883037863065403085064846413201295917749516}{676665246600370165764688022685481092903376878621944841} a^{3} - \frac{491365574819688707737811867558003014714219112016191104}{2029995739801110497294064068056443278710130635865834523} a^{2} + \frac{145202310964745768661299691190449068702022095905762535}{2029995739801110497294064068056443278710130635865834523} a - \frac{84964054504886353971686868644173236250611680622994772}{225555082200123388588229340895160364301125626207314947}$, $\frac{1}{884563532543257375905816396549164756977134102990919955378915931} a^{31} + \frac{2689793}{10920537438805646616121190080853885888606593864085431547887851} a^{30} + \frac{58219777097673286151860439320080646013818368291063488495003}{884563532543257375905816396549164756977134102990919955378915931} a^{29} + \frac{76661989186078641347911782660082591365863198787993859864193}{884563532543257375905816396549164756977134102990919955378915931} a^{28} + \frac{118485467124840117382305451855692931618456829668929065161292}{294854510847752458635272132183054918992378034330306651792971977} a^{27} - \frac{42928265231168055505794081383529041759753067094241949116021}{98284836949250819545090710727684972997459344776768883930990659} a^{26} + \frac{394481704568091930099781477293714224251502225752171462210231}{884563532543257375905816396549164756977134102990919955378915931} a^{25} - \frac{368143920129112604569897406421880978856010473750616948901231}{884563532543257375905816396549164756977134102990919955378915931} a^{24} + \frac{1813275207369292988091648405302515243523351707820232490114508}{884563532543257375905816396549164756977134102990919955378915931} a^{23} - \frac{242731808816300251840902429149925079112429003097217757591899}{294854510847752458635272132183054918992378034330306651792971977} a^{22} - \frac{682983572529021222464054722991529522737827196552193951312794}{884563532543257375905816396549164756977134102990919955378915931} a^{21} + \frac{1105421839060914563070595751219898717839797604376802642903850}{884563532543257375905816396549164756977134102990919955378915931} a^{20} - \frac{779330035817153890240634358799904716082294990345716800051547}{884563532543257375905816396549164756977134102990919955378915931} a^{19} + \frac{1856428755671618298543561398474629377729673255987157473752004}{884563532543257375905816396549164756977134102990919955378915931} a^{18} + \frac{150038733793815450693223877336574259189474093155486027418873}{98284836949250819545090710727684972997459344776768883930990659} a^{17} + \frac{2460274533705197396292219865488629981668819894945840967726540}{884563532543257375905816396549164756977134102990919955378915931} a^{16} - \frac{11923554408078083803305375430157662146320190267222016569175760}{884563532543257375905816396549164756977134102990919955378915931} a^{15} + \frac{6552592068558445784071601801669922278686862724893761520110612}{884563532543257375905816396549164756977134102990919955378915931} a^{14} - \frac{10648005573919668660375613618497933139879777543698561445210169}{884563532543257375905816396549164756977134102990919955378915931} a^{13} - \frac{14854368177789527674257408750220623641964302512800752955025090}{884563532543257375905816396549164756977134102990919955378915931} a^{12} + \frac{709146695970367376223317853333372675352557776533567933434413}{32761612316416939848363570242561657665819781592256294643663553} a^{11} - \frac{2159160253432806009944103278670151786284900517690092955466434}{294854510847752458635272132183054918992378034330306651792971977} a^{10} - \frac{21643236026534161959737172511267247979687530338375549168638103}{884563532543257375905816396549164756977134102990919955378915931} a^{9} + \frac{22580928482420800657425353517843980774200593552757298387516}{2321689061793326445947024662858700149546283734884304344826551} a^{8} - \frac{102789080952894129097413366326018318958177504264432799644170938}{884563532543257375905816396549164756977134102990919955378915931} a^{7} + \frac{67758709318367620836608399650886535260498669412834826116367816}{884563532543257375905816396549164756977134102990919955378915931} a^{6} + \frac{110608592591395055029164879866090946905712709078787973114929920}{884563532543257375905816396549164756977134102990919955378915931} a^{5} - \frac{92529666246711683156567591409563839404158776736895057543048040}{884563532543257375905816396549164756977134102990919955378915931} a^{4} - \frac{286328877592715749034296503157870011604288894392674695762582366}{884563532543257375905816396549164756977134102990919955378915931} a^{3} + \frac{206953629060550880804164268295023912128690786469707820780776271}{884563532543257375905816396549164756977134102990919955378915931} a^{2} + \frac{430877872295585483316078978940955221854095264525630296195437680}{884563532543257375905816396549164756977134102990919955378915931} a + \frac{432402505776433502212064309790572516510148568677634379131586096}{884563532543257375905816396549164756977134102990919955378915931}$
Class group and class number
$C_{2}\times C_{6}\times C_{1752}$, which has order $21024$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8308747870416475249348652429442687054615240}{928210214815322586782836793807244297535496404145329} a^{30} - \frac{124631218056247128740229786441640305819228600}{928210214815322586782836793807244297535496404145329} a^{29} + \frac{3431111842368871127699973835109667259633612748}{2784630644445967760348510381421732892606489212435987} a^{28} - \frac{22735428527746028653532987043882359553567172672}{2784630644445967760348510381421732892606489212435987} a^{27} + \frac{40193551242131525768778932416062647914765453656}{928210214815322586782836793807244297535496404145329} a^{26} - \frac{177845845191793128073872795978955041714474313044}{928210214815322586782836793807244297535496404145329} a^{25} + \frac{677967503514908915632565144072626307646018913746}{928210214815322586782836793807244297535496404145329} a^{24} - \frac{2267147269283571145284075518825871860158634517792}{928210214815322586782836793807244297535496404145329} a^{23} + \frac{6750641341047409387410290901134847556602214436664}{928210214815322586782836793807244297535496404145329} a^{22} - \frac{18069834151673748927882643930197090500257395482808}{928210214815322586782836793807244297535496404145329} a^{21} + \frac{43840243169313968928234770586435982594124410320564}{928210214815322586782836793807244297535496404145329} a^{20} - \frac{96935548625205898960356276783399806489567470004992}{928210214815322586782836793807244297535496404145329} a^{19} + \frac{196281877127457247653293664808914226400015690371784}{928210214815322586782836793807244297535496404145329} a^{18} - \frac{365107092153422730045158403825250282463761891963218}{928210214815322586782836793807244297535496404145329} a^{17} + \frac{625630004173101852679156855569539901774759869566689}{928210214815322586782836793807244297535496404145329} a^{16} - \frac{989066894464138669911160602408066027424554190266912}{928210214815322586782836793807244297535496404145329} a^{15} + \frac{1444690265028979167960480177758041412565566125803432}{928210214815322586782836793807244297535496404145329} a^{14} - \frac{1950346846496011696330418444926440447111673739198904}{928210214815322586782836793807244297535496404145329} a^{13} + \frac{2411377630880418148322486851765014716007437584081284}{928210214815322586782836793807244297535496404145329} a^{12} - \frac{2667895399808080190822937793371706262137873262497344}{928210214815322586782836793807244297535496404145329} a^{11} + \frac{3190093404413643578198957502278562303799442667056344}{928210214815322586782836793807244297535496404145329} a^{10} - \frac{5215906705874830596503563827342577543029952798700756}{928210214815322586782836793807244297535496404145329} a^{9} + \frac{4346023909105821829618049331292028295896289533703570}{928210214815322586782836793807244297535496404145329} a^{8} + \frac{6254153717396227435554391384818405464243945129295648}{928210214815322586782836793807244297535496404145329} a^{7} - \frac{10686143113790639532152861897906620257006061693840776}{928210214815322586782836793807244297535496404145329} a^{6} - \frac{4785147879158732496256017805788749848530650151976632}{928210214815322586782836793807244297535496404145329} a^{5} + \frac{13480208635905943351679933012190481050296459969721780}{928210214815322586782836793807244297535496404145329} a^{4} - \frac{4663675730096572919908148332876867319444312090904192}{928210214815322586782836793807244297535496404145329} a^{3} - \frac{1392642708127843401494564021305249442511941448467063}{2784630644445967760348510381421732892606489212435987} a^{2} - \frac{284422994176842222851743298749241285351906879306306}{2784630644445967760348510381421732892606489212435987} a - \frac{3242292628379579995560059178973124337370087096153177}{2784630644445967760348510381421732892606489212435987} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56808797853492.48 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |