Normalized defining polynomial
\( x^{32} + 32 x^{30} + 608 x^{28} + 7680 x^{26} + 72384 x^{24} + 517120 x^{22} + 2891776 x^{20} + 12541952 x^{18} + 42535999 x^{16} + 109410336 x^{14} + 213070656 x^{12} + 292113152 x^{10} + 276113088 x^{8} + 134830080 x^{6} + 46443520 x^{4} + 7872512 x^{2} + 923521 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(486797299958529611528622959063550881784243829894751113445376=2^{128}\cdot 3^{16}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(643,·)$, $\chi_{672}(391,·)$, $\chi_{672}(139,·)$, $\chi_{672}(533,·)$, $\chi_{672}(281,·)$, $\chi_{672}(29,·)$, $\chi_{672}(671,·)$, $\chi_{672}(419,·)$, $\chi_{672}(421,·)$, $\chi_{672}(167,·)$, $\chi_{672}(169,·)$, $\chi_{672}(559,·)$, $\chi_{672}(307,·)$, $\chi_{672}(55,·)$, $\chi_{672}(449,·)$, $\chi_{672}(197,·)$, $\chi_{672}(587,·)$, $\chi_{672}(589,·)$, $\chi_{672}(335,·)$, $\chi_{672}(337,·)$, $\chi_{672}(83,·)$, $\chi_{672}(85,·)$, $\chi_{672}(475,·)$, $\chi_{672}(223,·)$, $\chi_{672}(617,·)$, $\chi_{672}(365,·)$, $\chi_{672}(113,·)$, $\chi_{672}(503,·)$, $\chi_{672}(505,·)$, $\chi_{672}(251,·)$, $\chi_{672}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31} a^{15} - \frac{4}{31} a^{13} - \frac{12}{31} a^{11} + \frac{10}{31} a^{9} - \frac{14}{31} a^{7} - \frac{7}{31} a^{5} + \frac{7}{31} a^{3} + \frac{13}{31} a$, $\frac{1}{93} a^{16} - \frac{35}{93} a^{14} - \frac{43}{93} a^{12} + \frac{10}{93} a^{10} - \frac{15}{31} a^{8} + \frac{8}{31} a^{6} - \frac{8}{31} a^{4} + \frac{13}{93} a^{2} + \frac{1}{3}$, $\frac{1}{93} a^{17} + \frac{1}{93} a^{15} - \frac{1}{93} a^{13} + \frac{43}{93} a^{11} + \frac{12}{31} a^{9} - \frac{5}{31} a^{7} + \frac{1}{31} a^{5} - \frac{14}{93} a^{3} + \frac{34}{93} a$, $\frac{1}{93} a^{18} + \frac{34}{93} a^{14} - \frac{7}{93} a^{12} + \frac{26}{93} a^{10} + \frac{10}{31} a^{8} - \frac{7}{31} a^{6} + \frac{10}{93} a^{4} + \frac{7}{31} a^{2} - \frac{1}{3}$, $\frac{1}{93} a^{19} + \frac{1}{93} a^{15} + \frac{32}{93} a^{13} - \frac{43}{93} a^{11} - \frac{7}{31} a^{9} - \frac{8}{31} a^{7} - \frac{38}{93} a^{5} - \frac{8}{31} a^{3} + \frac{5}{93} a$, $\frac{1}{93} a^{20} - \frac{26}{93} a^{14} - \frac{1}{3} a^{10} + \frac{7}{31} a^{8} + \frac{1}{3} a^{6} - \frac{8}{93} a^{2} - \frac{1}{3}$, $\frac{1}{93} a^{21} + \frac{1}{93} a^{15} - \frac{5}{31} a^{13} + \frac{17}{93} a^{11} + \frac{4}{31} a^{9} + \frac{25}{93} a^{7} - \frac{1}{31} a^{5} - \frac{5}{93} a^{3} + \frac{41}{93} a$, $\frac{1}{93} a^{22} + \frac{20}{93} a^{14} - \frac{11}{31} a^{12} + \frac{2}{93} a^{10} - \frac{23}{93} a^{8} - \frac{9}{31} a^{6} + \frac{19}{93} a^{4} + \frac{28}{93} a^{2} - \frac{1}{3}$, $\frac{1}{93} a^{23} - \frac{1}{93} a^{15} - \frac{14}{31} a^{13} - \frac{25}{93} a^{11} + \frac{46}{93} a^{9} - \frac{4}{31} a^{7} - \frac{20}{93} a^{5} - \frac{26}{93} a^{3} - \frac{25}{93} a$, $\frac{1}{279} a^{24} - \frac{1}{279} a^{18} - \frac{2}{31} a^{14} - \frac{61}{279} a^{12} - \frac{7}{31} a^{10} + \frac{11}{31} a^{8} - \frac{68}{279} a^{6} + \frac{14}{31} a^{4} - \frac{14}{31} a^{2} + \frac{2}{9}$, $\frac{1}{279} a^{25} - \frac{1}{279} a^{19} - \frac{133}{279} a^{13} - \frac{41}{279} a^{7} + \frac{17}{279} a$, $\frac{1}{8649} a^{26} + \frac{5}{2883} a^{24} - \frac{2}{2883} a^{22} + \frac{41}{8649} a^{20} + \frac{10}{2883} a^{18} - \frac{10}{2883} a^{16} + \frac{686}{8649} a^{14} - \frac{937}{2883} a^{12} - \frac{835}{2883} a^{10} - \frac{3206}{8649} a^{8} - \frac{128}{2883} a^{6} - \frac{1157}{2883} a^{4} + \frac{2363}{8649} a^{2}$, $\frac{1}{8649} a^{27} + \frac{5}{2883} a^{25} - \frac{2}{2883} a^{23} + \frac{41}{8649} a^{21} + \frac{10}{2883} a^{19} - \frac{10}{2883} a^{17} + \frac{128}{8649} a^{15} - \frac{193}{2883} a^{13} + \frac{1397}{2883} a^{11} - \frac{137}{8649} a^{9} - \frac{407}{2883} a^{7} + \frac{145}{2883} a^{5} - \frac{1543}{8649} a^{3} + \frac{5}{31} a$, $\frac{1}{147033} a^{28} + \frac{7}{147033} a^{26} + \frac{215}{147033} a^{24} - \frac{190}{147033} a^{22} + \frac{446}{147033} a^{20} - \frac{146}{147033} a^{18} - \frac{376}{147033} a^{16} + \frac{65264}{147033} a^{14} + \frac{43822}{147033} a^{12} + \frac{48640}{147033} a^{10} + \frac{67114}{147033} a^{8} - \frac{42652}{147033} a^{6} + \frac{34502}{147033} a^{4} + \frac{12344}{147033} a^{2} + \frac{31}{153}$, $\frac{1}{4558023} a^{29} + \frac{194}{4558023} a^{27} + \frac{5128}{4558023} a^{25} + \frac{12917}{4558023} a^{23} + \frac{6532}{4558023} a^{21} + \frac{22328}{4558023} a^{19} - \frac{2824}{4558023} a^{17} - \frac{13565}{4558023} a^{15} + \frac{1591910}{4558023} a^{13} + \frac{1667125}{4558023} a^{11} + \frac{183785}{4558023} a^{9} + \frac{2221204}{4558023} a^{7} - \frac{55780}{147033} a^{5} + \frac{598096}{4558023} a^{3} + \frac{1544}{4743} a$, $\frac{1}{67478933098214527960073784590552506427127} a^{30} + \frac{3191763078727318409138764104619528}{22492977699404842653357928196850835475709} a^{28} - \frac{3245587234287141647190809568313835387}{67478933098214527960073784590552506427127} a^{26} - \frac{39106171427689363309812454268109474577}{67478933098214527960073784590552506427127} a^{24} + \frac{75272230258174081201106086764577127726}{22492977699404842653357928196850835475709} a^{22} - \frac{284944743146123956470776791638429295414}{67478933098214527960073784590552506427127} a^{20} - \frac{213506227400128850735148565063049448784}{67478933098214527960073784590552506427127} a^{18} + \frac{87469702763927056579043546490067458227}{22492977699404842653357928196850835475709} a^{16} - \frac{9108059882413009646889262096314175574974}{67478933098214527960073784590552506427127} a^{14} + \frac{1088843541087851292995349497328800089828}{67478933098214527960073784590552506427127} a^{12} + \frac{9723212046107850473464620677122228450313}{22492977699404842653357928196850835475709} a^{10} - \frac{21888970199743075336647789447009063212267}{67478933098214527960073784590552506427127} a^{8} - \frac{164796153111647147407139649151081169413}{2176739777361758966453993051308145368617} a^{6} - \frac{3154643499797247601703481075380492908206}{7497659233134947551119309398950278491903} a^{4} - \frac{29965246878514576250754128990692170778}{2176739777361758966453993051308145368617} a^{2} + \frac{68004113203534768614538333672021138}{755025937343655555481787392059710499}$, $\frac{1}{67478933098214527960073784590552506427127} a^{31} - \frac{5229140907811290958501107530449465}{67478933098214527960073784590552506427127} a^{29} + \frac{1684288003662609332719684579840744930}{67478933098214527960073784590552506427127} a^{27} + \frac{64701002650963914467102099984967016}{2176739777361758966453993051308145368617} a^{25} - \frac{394314242282101994195084251706378603}{2176739777361758966453993051308145368617} a^{23} - \frac{61767958725425770218071988985485456739}{67478933098214527960073784590552506427127} a^{21} - \frac{103333834359558943124986059082749770722}{22492977699404842653357928196850835475709} a^{19} + \frac{70158778441884874766807285092018050367}{67478933098214527960073784590552506427127} a^{17} + \frac{798368961730503018155923761704088337523}{67478933098214527960073784590552506427127} a^{15} + \frac{332664683991932709737290783182665083528}{3969349005777325174121987328856029789831} a^{13} + \frac{182132587910599584228201531616040475518}{67478933098214527960073784590552506427127} a^{11} - \frac{6088009449467211770217731666981106509930}{67478933098214527960073784590552506427127} a^{9} + \frac{33020869310900743644518230045324079350147}{67478933098214527960073784590552506427127} a^{7} + \frac{7131793938660021645685933265588990794822}{67478933098214527960073784590552506427127} a^{5} - \frac{1667764568061217964454975829689090453386}{3969349005777325174121987328856029789831} a^{3} - \frac{27859046674551671962131211209009319307}{70217412172959966659806227461553076407} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5588037799199692437815130897092704}{22492977699404842653357928196850835475709} a^{30} + \frac{177618892499354894089021836294903008}{22492977699404842653357928196850835475709} a^{28} + \frac{3359818823788169317875884207981913088}{22492977699404842653357928196850835475709} a^{26} + \frac{42207471233935779536540190945386453056}{22492977699404842653357928196850835475709} a^{24} + \frac{395654112907150740008079308234422739968}{22492977699404842653357928196850835475709} a^{22} + \frac{2807565089990419228479456289271439104000}{22492977699404842653357928196850835475709} a^{20} + \frac{5194140049637997435822538867828664786944}{7497659233134947551119309398950278491903} a^{18} + \frac{66918149107693139002028386432941961832509}{22492977699404842653357928196850835475709} a^{16} + \frac{224292926005368763396551248537197387974560}{22492977699404842653357928196850835475709} a^{14} + \frac{567263872466338905650167640529114951191552}{22492977699404842653357928196850835475709} a^{12} + \frac{1081942377975156221823331566175726979455232}{22492977699404842653357928196850835475709} a^{10} + \frac{1431747474514333755889302315491639489730496}{22492977699404842653357928196850835475709} a^{8} + \frac{1346157327645763751100320295352499408896}{23405804057653322219935409153851025469} a^{6} + \frac{547297140164574031721754548533415853675520}{22492977699404842653357928196850835475709} a^{4} + \frac{6782803115177087593084347673249231364096}{725579925787252988817997683769381789539} a^{2} + \frac{1189415419557514628270232866191986688}{755025937343655555481787392059710499} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |