Normalized defining polynomial
\( x^{32} + 48 x^{30} + 1128 x^{28} + 16800 x^{26} + 175124 x^{24} + 1338720 x^{22} + 7679056 x^{20} + 33321408 x^{18} + 109128129 x^{16} + 266433984 x^{14} + 474418816 x^{12} + 595027968 x^{10} + 501224448 x^{8} + 258048000 x^{6} + 68485120 x^{4} + 3145728 x^{2} + 65536 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(486797299958529611528622959063550881784243829894751113445376=2^{128}\cdot 3^{16}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(517,·)$, $\chi_{672}(265,·)$, $\chi_{672}(13,·)$, $\chi_{672}(659,·)$, $\chi_{672}(407,·)$, $\chi_{672}(155,·)$, $\chi_{672}(671,·)$, $\chi_{672}(419,·)$, $\chi_{672}(421,·)$, $\chi_{672}(167,·)$, $\chi_{672}(169,·)$, $\chi_{672}(433,·)$, $\chi_{672}(181,·)$, $\chi_{672}(575,·)$, $\chi_{672}(323,·)$, $\chi_{672}(71,·)$, $\chi_{672}(587,·)$, $\chi_{672}(589,·)$, $\chi_{672}(335,·)$, $\chi_{672}(337,·)$, $\chi_{672}(83,·)$, $\chi_{672}(85,·)$, $\chi_{672}(601,·)$, $\chi_{672}(349,·)$, $\chi_{672}(97,·)$, $\chi_{672}(491,·)$, $\chi_{672}(239,·)$, $\chi_{672}(503,·)$, $\chi_{672}(505,·)$, $\chi_{672}(251,·)$, $\chi_{672}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{4} a^{18} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} - \frac{1}{2} a^{11} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{20} - \frac{1}{2} a^{16} + \frac{1}{4} a^{12} + \frac{1}{16} a^{4}$, $\frac{1}{32} a^{21} - \frac{1}{4} a^{17} - \frac{3}{8} a^{13} - \frac{1}{2} a^{9} + \frac{1}{32} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{22} - \frac{1}{8} a^{18} - \frac{1}{2} a^{16} + \frac{5}{16} a^{14} - \frac{1}{2} a^{12} + \frac{1}{4} a^{10} + \frac{1}{64} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{128} a^{23} - \frac{1}{16} a^{19} - \frac{1}{4} a^{17} + \frac{5}{32} a^{15} + \frac{1}{4} a^{13} + \frac{1}{8} a^{11} - \frac{1}{2} a^{9} - \frac{63}{128} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{256} a^{24} - \frac{1}{32} a^{20} - \frac{1}{8} a^{18} - \frac{27}{64} a^{16} - \frac{3}{8} a^{14} - \frac{7}{16} a^{12} - \frac{1}{4} a^{10} - \frac{63}{256} a^{8} - \frac{7}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{512} a^{25} - \frac{1}{64} a^{21} - \frac{1}{16} a^{19} - \frac{27}{128} a^{17} - \frac{3}{16} a^{15} - \frac{7}{32} a^{13} - \frac{1}{8} a^{11} + \frac{193}{512} a^{9} - \frac{7}{32} a^{7} - \frac{15}{32} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{1024} a^{26} - \frac{1}{128} a^{22} - \frac{1}{32} a^{20} - \frac{27}{256} a^{18} + \frac{13}{32} a^{16} + \frac{25}{64} a^{14} - \frac{1}{16} a^{12} - \frac{319}{1024} a^{10} + \frac{25}{64} a^{8} - \frac{15}{64} a^{6} - \frac{5}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{2048} a^{27} - \frac{1}{256} a^{23} - \frac{1}{64} a^{21} - \frac{27}{512} a^{19} + \frac{13}{64} a^{17} - \frac{39}{128} a^{15} - \frac{1}{32} a^{13} - \frac{319}{2048} a^{11} + \frac{25}{128} a^{9} + \frac{49}{128} a^{7} + \frac{11}{32} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{13438976} a^{28} + \frac{277}{3359744} a^{26} + \frac{1067}{1679872} a^{24} + \frac{21}{209984} a^{22} + \frac{68549}{3359744} a^{20} - \frac{5645}{49408} a^{18} - \frac{299239}{839936} a^{16} - \frac{1809}{52496} a^{14} - \frac{4854847}{13438976} a^{12} - \frac{1075399}{3359744} a^{10} + \frac{11979}{49408} a^{8} + \frac{11649}{26248} a^{6} + \frac{18001}{52496} a^{4} + \frac{81}{13124} a^{2} - \frac{177}{3281}$, $\frac{1}{26877952} a^{29} + \frac{277}{6719488} a^{27} + \frac{1067}{3359744} a^{25} + \frac{21}{419968} a^{23} + \frac{68549}{6719488} a^{21} - \frac{5645}{98816} a^{19} - \frac{299239}{1679872} a^{17} + \frac{50687}{104992} a^{15} + \frac{8584129}{26877952} a^{13} - \frac{1075399}{6719488} a^{11} + \frac{11979}{98816} a^{9} + \frac{11649}{52496} a^{7} + \frac{18001}{104992} a^{5} - \frac{13043}{26248} a^{3} + \frac{1552}{3281} a$, $\frac{1}{945449007588843380398786299857197744799744} a^{30} - \frac{957844143599070664510233302115183}{29545281487151355637462071870537429524992} a^{28} - \frac{47540539928890030046791008248143271025}{118181125948605422549848287482149718099968} a^{26} + \frac{52254598080767032862739720452822053585}{29545281487151355637462071870537429524992} a^{24} - \frac{1358792424907824767805328665948844366107}{236362251897210845099696574964299436199936} a^{22} + \frac{82245936777350103497703723291543130609}{29545281487151355637462071870537429524992} a^{20} + \frac{3447675747361853038102306243254825565113}{59090562974302711274924143741074859049984} a^{18} - \frac{3297438428002769231532865050140723793589}{14772640743575677818731035935268714762496} a^{16} - \frac{104243017248478248593361944299937052795199}{945449007588843380398786299857197744799744} a^{14} - \frac{25783116385086218393706376913059341542789}{59090562974302711274924143741074859049984} a^{12} + \frac{26596529525316008178796384236483784865689}{59090562974302711274924143741074859049984} a^{10} + \frac{57814626900845824971022820108514357091}{461645023236739931835344872977147336328} a^{8} + \frac{1710011085059625888247506486165238388039}{3693160185893919454682758983817178690624} a^{6} + \frac{28488587291443474211373024932098919407}{57705627904592491479418109122143417041} a^{4} - \frac{50313835234128249886145302445646006487}{230822511618369965917672436488573668164} a^{2} - \frac{4207337442114008159165064255403503135}{57705627904592491479418109122143417041}$, $\frac{1}{1890898015177686760797572599714395489599488} a^{31} - \frac{957844143599070664510233302115183}{59090562974302711274924143741074859049984} a^{29} - \frac{47540539928890030046791008248143271025}{236362251897210845099696574964299436199936} a^{27} + \frac{52254598080767032862739720452822053585}{59090562974302711274924143741074859049984} a^{25} - \frac{1358792424907824767805328665948844366107}{472724503794421690199393149928598872399872} a^{23} + \frac{82245936777350103497703723291543130609}{59090562974302711274924143741074859049984} a^{21} + \frac{3447675747361853038102306243254825565113}{118181125948605422549848287482149718099968} a^{19} - \frac{3297438428002769231532865050140723793589}{29545281487151355637462071870537429524992} a^{17} + \frac{841205990340365131805424355557260692004545}{1890898015177686760797572599714395489599488} a^{15} - \frac{25783116385086218393706376913059341542789}{118181125948605422549848287482149718099968} a^{13} - \frac{32494033448986703096127759504591074184295}{118181125948605422549848287482149718099968} a^{11} - \frac{403830396335894106864322052868632979237}{923290046473479863670689745954294672656} a^{9} - \frac{1983149100834293566435252497651940302585}{7386320371787838909365517967634357381248} a^{7} + \frac{28488587291443474211373024932098919407}{115411255809184982958836218244286834082} a^{5} - \frac{50313835234128249886145302445646006487}{461645023236739931835344872977147336328} a^{3} + \frac{26749145231239241660126522433369956953}{57705627904592491479418109122143417041} a$
Class group and class number
$C_{8}\times C_{8}\times C_{19856}$, which has order $1270784$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94466336304.51273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |