Properties

Label 32.0.48679729995...5376.4
Degree $32$
Signature $[0, 16]$
Discriminant $2^{128}\cdot 3^{16}\cdot 7^{16}$
Root discriminant $73.32$
Ramified primes $2, 3, 7$
Class number $2304$ (GRH)
Class group $[4, 24, 24]$ (GRH)
Galois group $C_2^2\times C_8$ (as 32T37)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25054, -463120, 4169416, -24348880, 103611084, -342110896, 911516648, -2012511408, 3753175770, -5997987856, 8306946984, -10060579408, 10733886004, -10150858480, 8552171016, -6446364592, 4362326951, -2657464016, 1460287592, -724744720, 325050908, -131699184, 48150984, -15845360, 4678390, -1231568, 287336, -58576, 10332, -1520, 184, -16, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678390*x^24 - 15845360*x^23 + 48150984*x^22 - 131699184*x^21 + 325050908*x^20 - 724744720*x^19 + 1460287592*x^18 - 2657464016*x^17 + 4362326951*x^16 - 6446364592*x^15 + 8552171016*x^14 - 10150858480*x^13 + 10733886004*x^12 - 10060579408*x^11 + 8306946984*x^10 - 5997987856*x^9 + 3753175770*x^8 - 2012511408*x^7 + 911516648*x^6 - 342110896*x^5 + 103611084*x^4 - 24348880*x^3 + 4169416*x^2 - 463120*x + 25054)
 
gp: K = bnfinit(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678390*x^24 - 15845360*x^23 + 48150984*x^22 - 131699184*x^21 + 325050908*x^20 - 724744720*x^19 + 1460287592*x^18 - 2657464016*x^17 + 4362326951*x^16 - 6446364592*x^15 + 8552171016*x^14 - 10150858480*x^13 + 10733886004*x^12 - 10060579408*x^11 + 8306946984*x^10 - 5997987856*x^9 + 3753175770*x^8 - 2012511408*x^7 + 911516648*x^6 - 342110896*x^5 + 103611084*x^4 - 24348880*x^3 + 4169416*x^2 - 463120*x + 25054, 1)
 

Normalized defining polynomial

\( x^{32} - 16 x^{31} + 184 x^{30} - 1520 x^{29} + 10332 x^{28} - 58576 x^{27} + 287336 x^{26} - 1231568 x^{25} + 4678390 x^{24} - 15845360 x^{23} + 48150984 x^{22} - 131699184 x^{21} + 325050908 x^{20} - 724744720 x^{19} + 1460287592 x^{18} - 2657464016 x^{17} + 4362326951 x^{16} - 6446364592 x^{15} + 8552171016 x^{14} - 10150858480 x^{13} + 10733886004 x^{12} - 10060579408 x^{11} + 8306946984 x^{10} - 5997987856 x^{9} + 3753175770 x^{8} - 2012511408 x^{7} + 911516648 x^{6} - 342110896 x^{5} + 103611084 x^{4} - 24348880 x^{3} + 4169416 x^{2} - 463120 x + 25054 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(486797299958529611528622959063550881784243829894751113445376=2^{128}\cdot 3^{16}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $73.32$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(672=2^{5}\cdot 3\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(643,·)$, $\chi_{672}(265,·)$, $\chi_{672}(139,·)$, $\chi_{672}(533,·)$, $\chi_{672}(407,·)$, $\chi_{672}(29,·)$, $\chi_{672}(671,·)$, $\chi_{672}(547,·)$, $\chi_{672}(293,·)$, $\chi_{672}(167,·)$, $\chi_{672}(169,·)$, $\chi_{672}(43,·)$, $\chi_{672}(433,·)$, $\chi_{672}(307,·)$, $\chi_{672}(575,·)$, $\chi_{672}(197,·)$, $\chi_{672}(71,·)$, $\chi_{672}(461,·)$, $\chi_{672}(335,·)$, $\chi_{672}(337,·)$, $\chi_{672}(211,·)$, $\chi_{672}(601,·)$, $\chi_{672}(475,·)$, $\chi_{672}(97,·)$, $\chi_{672}(365,·)$, $\chi_{672}(239,·)$, $\chi_{672}(629,·)$, $\chi_{672}(503,·)$, $\chi_{672}(505,·)$, $\chi_{672}(379,·)$, $\chi_{672}(125,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{60511348672248695464963355773231} a^{30} - \frac{15}{60511348672248695464963355773231} a^{29} + \frac{23779599793064579820018313539848}{60511348672248695464963355773231} a^{28} + \frac{30153694930588055309523745082529}{60511348672248695464963355773231} a^{27} + \frac{18925872456754136241532965645777}{60511348672248695464963355773231} a^{26} - \frac{13152989192998056403276900218300}{60511348672248695464963355773231} a^{25} + \frac{12054944133716877641267815830136}{60511348672248695464963355773231} a^{24} - \frac{502937235295994948984637566817}{60511348672248695464963355773231} a^{23} + \frac{22860368549101790269781484104704}{60511348672248695464963355773231} a^{22} - \frac{22289037896768766242774707540028}{60511348672248695464963355773231} a^{21} + \frac{26528937865829498387040239092383}{60511348672248695464963355773231} a^{20} + \frac{8488376099671655550070058591794}{60511348672248695464963355773231} a^{19} + \frac{10251832025664018441661894675355}{60511348672248695464963355773231} a^{18} - \frac{398890246197832650101517711741}{1951978989427377273063334057201} a^{17} - \frac{16020276809829962355440348337201}{60511348672248695464963355773231} a^{16} - \frac{16977199320967618717961798759338}{60511348672248695464963355773231} a^{15} - \frac{378770649379188998359037612855}{1951978989427377273063334057201} a^{14} + \frac{29941203530754308370135288834795}{60511348672248695464963355773231} a^{13} + \frac{18710517012157803328043366588744}{60511348672248695464963355773231} a^{12} - \frac{18601315742558282793717607789694}{60511348672248695464963355773231} a^{11} - \frac{1316672568521107790924268427133}{60511348672248695464963355773231} a^{10} - \frac{4716788377605061330915634114312}{60511348672248695464963355773231} a^{9} - \frac{26634488819958616189528461677122}{60511348672248695464963355773231} a^{8} - \frac{727196147943711237135895093715}{3559491098367570321468432692543} a^{7} + \frac{14945209323592981786737336058929}{60511348672248695464963355773231} a^{6} + \frac{3849395684908105841507223766684}{60511348672248695464963355773231} a^{5} - \frac{49821443160213375622710757937}{60511348672248695464963355773231} a^{4} + \frac{15112691650718200222440539014279}{60511348672248695464963355773231} a^{3} - \frac{9251835327913765311257897242827}{60511348672248695464963355773231} a^{2} - \frac{9108109370765108150804510966372}{60511348672248695464963355773231} a + \frac{4037268821058775356915923742047}{60511348672248695464963355773231}$, $\frac{1}{302133163920537736456562035375742383} a^{31} + \frac{2481}{302133163920537736456562035375742383} a^{30} + \frac{93755858693106293855048256406237227}{302133163920537736456562035375742383} a^{29} + \frac{59505057475764276677005161052089599}{302133163920537736456562035375742383} a^{28} - \frac{100684453519694666223300637896917587}{302133163920537736456562035375742383} a^{27} + \frac{147977220202159403951626992714070707}{302133163920537736456562035375742383} a^{26} + \frac{128929028919331331072909174852799799}{302133163920537736456562035375742383} a^{25} + \frac{1587426574224278011760771099961085}{9746231094210894724405226947604593} a^{24} + \frac{32774906983054065248913532061885294}{302133163920537736456562035375742383} a^{23} + \frac{147562168474345348162716989854554732}{302133163920537736456562035375742383} a^{22} - \frac{30918279394191543293873580625339257}{302133163920537736456562035375742383} a^{21} + \frac{92607665310310530852326529950308478}{302133163920537736456562035375742383} a^{20} - \frac{6131928660045025260438382845771452}{17772539054149278615091884433867199} a^{19} - \frac{84978026885773109396253108937070928}{302133163920537736456562035375742383} a^{18} + \frac{108598106722919913950130060245288638}{302133163920537736456562035375742383} a^{17} - \frac{87626019521716276988823232241945831}{302133163920537736456562035375742383} a^{16} + \frac{55944110197138198951583673262194222}{302133163920537736456562035375742383} a^{15} + \frac{114618170579774024187024100985309633}{302133163920537736456562035375742383} a^{14} + \frac{144037448759499667802568766658586559}{302133163920537736456562035375742383} a^{13} - \frac{51345535702439567829238110954918890}{302133163920537736456562035375742383} a^{12} + \frac{30419212047761848279593388520500013}{302133163920537736456562035375742383} a^{11} - \frac{99806732651642959374094442086541725}{302133163920537736456562035375742383} a^{10} + \frac{93368985713046041019951361122875604}{302133163920537736456562035375742383} a^{9} - \frac{51485231958414072624783438330928379}{302133163920537736456562035375742383} a^{8} - \frac{35379792890642614392235814963448276}{302133163920537736456562035375742383} a^{7} + \frac{57578393672576303626300622210885853}{302133163920537736456562035375742383} a^{6} - \frac{35533424301410054849836255595944999}{302133163920537736456562035375742383} a^{5} + \frac{142394984492668503434656857333162532}{302133163920537736456562035375742383} a^{4} - \frac{63523459803807353522983366726217906}{302133163920537736456562035375742383} a^{3} - \frac{31573277901958340690145385837314904}{302133163920537736456562035375742383} a^{2} + \frac{96417041815049030201461704069169374}{302133163920537736456562035375742383} a - \frac{97088575521189736377587957414242789}{302133163920537736456562035375742383}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{24}\times C_{24}$, which has order $2304$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 56335773768373.43 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_8$ (as 32T37):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^2\times C_8$
Character table for $C_2^2\times C_8$ is not computed

Intermediate fields

\(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}, \sqrt{-14})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{3}, \sqrt{-14})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\zeta_{16})^+\), 4.0.100352.5, 4.0.903168.5, 4.4.18432.1, 8.0.12745506816.6, 8.0.10070523904.2, 8.0.815712436224.3, 8.0.3262849744896.5, 8.0.3262849744896.2, \(\Q(\zeta_{48})^+\), 8.0.3262849744896.3, 8.8.5156108238848.1, 8.0.2147483648.1, 8.0.173946175488.1, 8.8.417644767346688.4, 16.0.10646188457767892278050816.2, 16.0.26585452170716224216367104.2, 16.0.174427151692069147083584569344.6, 16.0.697708606768276588334338277376.2, 16.0.697708606768276588334338277376.5, 16.16.697708606768276588334338277376.2, 16.0.121029087867608368152576.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ R ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$