Normalized defining polynomial
\( x^{32} + 13590431 x^{16} + 152587890625 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(486797299958529611528622959063550881784243829894751113445376=2^{128}\cdot 3^{16}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(503,·)$, $\chi_{672}(671,·)$, $\chi_{672}(545,·)$, $\chi_{672}(419,·)$, $\chi_{672}(421,·)$, $\chi_{672}(167,·)$, $\chi_{672}(41,·)$, $\chi_{672}(43,·)$, $\chi_{672}(211,·)$, $\chi_{672}(587,·)$, $\chi_{672}(589,·)$, $\chi_{672}(461,·)$, $\chi_{672}(337,·)$, $\chi_{672}(335,·)$, $\chi_{672}(547,·)$, $\chi_{672}(85,·)$, $\chi_{672}(377,·)$, $\chi_{672}(169,·)$, $\chi_{672}(463,·)$, $\chi_{672}(293,·)$, $\chi_{672}(379,·)$, $\chi_{672}(209,·)$, $\chi_{672}(295,·)$, $\chi_{672}(253,·)$, $\chi_{672}(83,·)$, $\chi_{672}(629,·)$, $\chi_{672}(631,·)$, $\chi_{672}(505,·)$, $\chi_{672}(251,·)$, $\chi_{672}(125,·)$, $\chi_{672}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2960771} a^{16} - \frac{606712}{2960771}$, $\frac{1}{14803855} a^{17} - \frac{6528254}{14803855} a$, $\frac{1}{74019275} a^{18} + \frac{23079456}{74019275} a^{2}$, $\frac{1}{370096375} a^{19} - \frac{50939819}{370096375} a^{3}$, $\frac{1}{1850481875} a^{20} + \frac{689252931}{1850481875} a^{4}$, $\frac{1}{9252409375} a^{21} + \frac{689252931}{9252409375} a^{5}$, $\frac{1}{46262046875} a^{22} - \frac{17815565819}{46262046875} a^{6}$, $\frac{1}{231310234375} a^{23} + \frac{28446481056}{231310234375} a^{7}$, $\frac{1}{1156551171875} a^{24} - \frac{202863753319}{1156551171875} a^{8}$, $\frac{1}{5782755859375} a^{25} + \frac{953687418556}{5782755859375} a^{9}$, $\frac{1}{28913779296875} a^{26} - \frac{4829068440819}{28913779296875} a^{10}$, $\frac{1}{144568896484375} a^{27} - \frac{62656627034569}{144568896484375} a^{11}$, $\frac{1}{722844482421875} a^{28} - \frac{351794420003319}{722844482421875} a^{12}$, $\frac{1}{3614222412109375} a^{29} - \frac{351794420003319}{3614222412109375} a^{13}$, $\frac{1}{18071112060546875} a^{30} - \frac{351794420003319}{18071112060546875} a^{14}$, $\frac{1}{90355560302734375} a^{31} - \frac{36494018541097069}{90355560302734375} a^{15}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6}{370096375} a^{19} + \frac{64457461}{370096375} a^{3} \) (order $32$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |