Normalized defining polynomial
\( x^{32} + 3 x^{28} + 13 x^{24} - 108 x^{20} - 384 x^{16} - 1728 x^{12} + 3328 x^{8} + 12288 x^{4} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(480960519379403029833827263813614000556122650443776\)\(\medspace = 2^{48}\cdot 3^{16}\cdot 13^{8}\cdot 17^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $38.35$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 13, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} + \frac{1}{8} a^{6}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{11} - \frac{1}{2} a^{9} + \frac{1}{16} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{96} a^{16} - \frac{1}{8} a^{13} - \frac{3}{32} a^{12} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{7}{96} a^{8} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{192} a^{17} - \frac{1}{16} a^{14} + \frac{5}{64} a^{13} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} + \frac{65}{192} a^{9} + \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{3} + \frac{1}{3} a$, $\frac{1}{192} a^{18} - \frac{3}{64} a^{14} - \frac{1}{8} a^{12} - \frac{7}{192} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{384} a^{19} - \frac{3}{128} a^{15} + \frac{1}{16} a^{13} + \frac{89}{384} a^{11} - \frac{1}{4} a^{10} + \frac{7}{16} a^{9} + \frac{3}{16} a^{7} + \frac{1}{4} a^{6} - \frac{7}{16} a^{5} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{384} a^{20} - \frac{1}{384} a^{16} - \frac{1}{16} a^{14} + \frac{17}{384} a^{12} - \frac{1}{4} a^{11} + \frac{1}{16} a^{10} + \frac{1}{24} a^{8} + \frac{1}{4} a^{7} - \frac{1}{16} a^{6} - \frac{1}{3} a^{4} - \frac{1}{4} a^{3} + \frac{1}{3}$, $\frac{1}{768} a^{21} - \frac{1}{768} a^{17} - \frac{1}{32} a^{15} + \frac{17}{768} a^{13} - \frac{1}{8} a^{12} + \frac{1}{32} a^{11} - \frac{23}{48} a^{9} + \frac{1}{8} a^{8} + \frac{15}{32} a^{7} + \frac{1}{3} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a$, $\frac{1}{768} a^{22} - \frac{1}{768} a^{18} + \frac{17}{768} a^{14} - \frac{11}{48} a^{10} + \frac{1}{12} a^{6} + \frac{5}{12} a^{2}$, $\frac{1}{1536} a^{23} - \frac{1}{1536} a^{19} + \frac{17}{1536} a^{15} - \frac{11}{96} a^{11} - \frac{11}{24} a^{7} - \frac{7}{24} a^{3}$, $\frac{1}{9216} a^{24} - \frac{1}{1024} a^{20} - \frac{13}{3072} a^{16} - \frac{1}{16} a^{14} - \frac{7}{128} a^{12} - \frac{1}{4} a^{11} + \frac{1}{16} a^{10} - \frac{7}{24} a^{8} + \frac{1}{4} a^{7} - \frac{1}{16} a^{6} + \frac{5}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{9}$, $\frac{1}{18432} a^{25} - \frac{1}{2048} a^{21} - \frac{13}{6144} a^{17} - \frac{1}{32} a^{15} + \frac{25}{256} a^{13} - \frac{1}{8} a^{12} - \frac{7}{32} a^{11} + \frac{11}{48} a^{9} + \frac{1}{8} a^{8} - \frac{9}{32} a^{7} - \frac{7}{32} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{4}{9} a$, $\frac{1}{36864} a^{26} + \frac{5}{12288} a^{22} - \frac{7}{4096} a^{18} + \frac{23}{384} a^{14} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{8} - \frac{37}{192} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{7}{18} a^{2} - \frac{1}{2} a$, $\frac{1}{73728} a^{27} + \frac{5}{24576} a^{23} - \frac{7}{8192} a^{19} + \frac{23}{768} a^{15} - \frac{1}{16} a^{13} + \frac{1}{16} a^{11} - \frac{1}{4} a^{10} - \frac{7}{16} a^{9} - \frac{37}{384} a^{7} + \frac{1}{4} a^{6} + \frac{7}{16} a^{5} - \frac{7}{36} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{147456} a^{28} - \frac{1}{147456} a^{24} - \frac{37}{49152} a^{20} - \frac{1}{3072} a^{16} - \frac{1}{8} a^{13} + \frac{1}{768} a^{12} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{293}{768} a^{8} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{144} a^{4} - \frac{1}{4} a^{2} - \frac{1}{9}$, $\frac{1}{147456} a^{29} - \frac{1}{147456} a^{25} + \frac{9}{16384} a^{21} - \frac{5}{3072} a^{17} - \frac{1}{32} a^{15} + \frac{3}{128} a^{13} - \frac{1}{8} a^{12} - \frac{7}{32} a^{11} + \frac{107}{768} a^{9} + \frac{1}{8} a^{8} - \frac{9}{32} a^{7} + \frac{49}{144} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{18} a$, $\frac{1}{589824} a^{30} - \frac{1}{294912} a^{29} - \frac{1}{294912} a^{28} - \frac{1}{589824} a^{26} + \frac{1}{294912} a^{25} + \frac{1}{294912} a^{24} - \frac{37}{196608} a^{22} + \frac{37}{98304} a^{21} + \frac{37}{98304} a^{20} + \frac{31}{12288} a^{18} + \frac{1}{6144} a^{17} - \frac{31}{6144} a^{16} + \frac{121}{3072} a^{14} - \frac{1}{1536} a^{13} - \frac{121}{1536} a^{12} + \frac{1}{8} a^{11} + \frac{227}{3072} a^{10} + \frac{293}{1536} a^{9} + \frac{541}{1536} a^{8} - \frac{1}{8} a^{7} - \frac{287}{576} a^{6} + \frac{143}{288} a^{5} + \frac{143}{288} a^{4} + \frac{1}{8} a^{3} - \frac{1}{9} a^{2} - \frac{4}{9} a - \frac{5}{18}$, $\frac{1}{1179648} a^{31} - \frac{1}{589824} a^{29} - \frac{1}{294912} a^{28} - \frac{1}{1179648} a^{27} + \frac{1}{589824} a^{25} + \frac{1}{294912} a^{24} - \frac{37}{393216} a^{23} + \frac{37}{196608} a^{21} + \frac{37}{98304} a^{20} + \frac{31}{24576} a^{19} - \frac{31}{12288} a^{17} - \frac{31}{6144} a^{16} - \frac{71}{6144} a^{15} - \frac{1}{16} a^{14} - \frac{121}{3072} a^{13} + \frac{71}{1536} a^{12} - \frac{1117}{6144} a^{11} + \frac{1}{16} a^{10} - \frac{995}{3072} a^{9} + \frac{349}{1536} a^{8} - \frac{35}{1152} a^{7} - \frac{1}{16} a^{6} - \frac{145}{576} a^{5} - \frac{109}{288} a^{4} + \frac{7}{36} a^{3} - \frac{5}{36} a - \frac{5}{18}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{5}{294912} a^{30} - \frac{101}{294912} a^{26} - \frac{25}{98304} a^{22} - \frac{5}{2048} a^{18} + \frac{55}{1536} a^{14} + \frac{5}{512} a^{10} + \frac{35}{288} a^{6} - \frac{55}{36} a^{2} \) (order $12$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 950005676337.5021 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times C_2^2\wr C_2$ (as 32T1369):
A solvable group of order 128 |
The 56 conjugacy class representatives for $C_2^2\times C_2^2\wr C_2$ are not computed |
Character table for $C_2^2\times C_2^2\wr C_2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
$17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |