Normalized defining polynomial
\( x^{32} + 20 x^{30} + 236 x^{28} + 1948 x^{26} + 12276 x^{24} + 58148 x^{22} + 212422 x^{20} + 567784 x^{18} + 1013620 x^{16} + 772588 x^{14} + 788932 x^{12} + 1345276 x^{10} + 364625 x^{8} - 228564 x^{6} + 145744 x^{4} - 25856 x^{2} + 4096 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(480960519379403029833827263813614000556122650443776\)\(\medspace = 2^{48}\cdot 3^{16}\cdot 13^{8}\cdot 17^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $38.35$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 13, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{136} a^{20} + \frac{3}{68} a^{18} - \frac{1}{8} a^{17} + \frac{5}{68} a^{16} + \frac{3}{34} a^{14} - \frac{1}{4} a^{13} + \frac{2}{17} a^{12} - \frac{1}{4} a^{11} + \frac{11}{68} a^{10} + \frac{9}{136} a^{8} - \frac{1}{4} a^{7} - \frac{21}{68} a^{6} + \frac{3}{8} a^{5} + \frac{3}{17} a^{4} - \frac{1}{2} a^{3} - \frac{27}{68} a^{2} - \frac{1}{2} a - \frac{8}{17}$, $\frac{1}{136} a^{21} + \frac{3}{68} a^{19} + \frac{5}{68} a^{17} - \frac{5}{136} a^{15} + \frac{2}{17} a^{13} - \frac{3}{34} a^{11} - \frac{25}{136} a^{9} + \frac{13}{68} a^{7} + \frac{29}{68} a^{5} - \frac{3}{136} a^{3} - \frac{8}{17} a$, $\frac{1}{136} a^{22} + \frac{1}{17} a^{18} + \frac{3}{136} a^{16} + \frac{3}{34} a^{14} + \frac{7}{34} a^{12} - \frac{21}{136} a^{10} - \frac{7}{34} a^{8} + \frac{1}{34} a^{6} + \frac{57}{136} a^{4} + \frac{7}{17} a^{2} - \frac{3}{17}$, $\frac{1}{272} a^{23} - \frac{1}{272} a^{22} + \frac{1}{34} a^{19} - \frac{1}{34} a^{18} + \frac{3}{272} a^{17} - \frac{3}{272} a^{16} + \frac{3}{68} a^{15} - \frac{3}{68} a^{14} + \frac{7}{68} a^{13} - \frac{7}{68} a^{12} + \frac{47}{272} a^{11} - \frac{47}{272} a^{10} + \frac{5}{34} a^{9} - \frac{5}{34} a^{8} + \frac{1}{68} a^{7} + \frac{33}{68} a^{6} - \frac{11}{272} a^{5} + \frac{11}{272} a^{4} - \frac{3}{68} a^{3} + \frac{3}{68} a^{2} - \frac{3}{34} a - \frac{7}{17}$, $\frac{1}{272} a^{24} - \frac{1}{272} a^{22} + \frac{15}{272} a^{18} - \frac{3}{272} a^{16} - \frac{3}{68} a^{14} + \frac{27}{272} a^{12} - \frac{47}{272} a^{10} + \frac{7}{68} a^{8} - \frac{19}{272} a^{6} - \frac{125}{272} a^{4} - \frac{7}{34} a^{2} + \frac{8}{17}$, $\frac{1}{1088} a^{25} + \frac{1}{1088} a^{23} - \frac{1}{272} a^{22} + \frac{31}{1088} a^{19} - \frac{1}{34} a^{18} + \frac{71}{1088} a^{17} - \frac{3}{272} a^{16} - \frac{7}{136} a^{15} - \frac{3}{68} a^{14} - \frac{189}{1088} a^{13} - \frac{7}{68} a^{12} + \frac{183}{1088} a^{11} - \frac{47}{272} a^{10} - \frac{7}{272} a^{9} - \frac{5}{34} a^{8} + \frac{261}{1088} a^{7} + \frac{33}{68} a^{6} - \frac{351}{1088} a^{5} + \frac{11}{272} a^{4} - \frac{37}{272} a^{3} + \frac{3}{68} a^{2} - \frac{29}{68} a - \frac{7}{17}$, $\frac{1}{1088} a^{26} + \frac{1}{1088} a^{24} - \frac{1}{272} a^{22} - \frac{1}{1088} a^{20} - \frac{1}{64} a^{18} - \frac{29}{272} a^{16} - \frac{1}{8} a^{15} - \frac{77}{1088} a^{14} - \frac{169}{1088} a^{12} - \frac{1}{4} a^{11} + \frac{21}{136} a^{10} - \frac{1}{4} a^{9} + \frac{5}{64} a^{8} + \frac{25}{1088} a^{6} + \frac{1}{4} a^{5} + \frac{61}{136} a^{4} + \frac{3}{8} a^{3} + \frac{31}{68} a^{2} - \frac{1}{2} a + \frac{8}{17}$, $\frac{1}{1088} a^{27} - \frac{1}{1088} a^{23} - \frac{1}{1088} a^{21} - \frac{1}{68} a^{19} + \frac{97}{1088} a^{17} - \frac{1}{8} a^{16} + \frac{27}{1088} a^{15} + \frac{33}{272} a^{13} - \frac{1}{4} a^{12} + \frac{173}{1088} a^{11} - \frac{1}{4} a^{10} - \frac{271}{1088} a^{9} - \frac{55}{272} a^{7} + \frac{1}{4} a^{6} + \frac{523}{1088} a^{5} + \frac{3}{8} a^{4} + \frac{13}{272} a^{3} - \frac{1}{2} a^{2} - \frac{13}{68} a$, $\frac{1}{239206592} a^{28} + \frac{12879}{239206592} a^{26} - \frac{193411}{119603296} a^{24} + \frac{181391}{239206592} a^{22} - \frac{725967}{239206592} a^{20} + \frac{173463}{119603296} a^{18} - \frac{1}{8} a^{17} - \frac{28584061}{239206592} a^{16} + \frac{21811377}{239206592} a^{14} - \frac{1}{4} a^{13} + \frac{23518525}{119603296} a^{12} - \frac{1}{4} a^{11} + \frac{2659581}{239206592} a^{10} + \frac{46079727}{239206592} a^{8} - \frac{1}{4} a^{7} - \frac{28592741}{119603296} a^{6} + \frac{3}{8} a^{5} - \frac{1159657}{29900824} a^{4} - \frac{1}{2} a^{3} - \frac{326555}{14950412} a^{2} - \frac{1}{2} a - \frac{958939}{3737603}$, $\frac{1}{239206592} a^{29} + \frac{12879}{239206592} a^{27} + \frac{1653}{7475206} a^{25} - \frac{258327}{239206592} a^{23} - \frac{1}{272} a^{22} - \frac{725967}{239206592} a^{21} + \frac{867837}{29900824} a^{19} - \frac{1}{34} a^{18} - \frac{2391}{239206592} a^{17} - \frac{3}{272} a^{16} + \frac{972633}{14070976} a^{15} - \frac{3}{68} a^{14} + \frac{14727359}{59801648} a^{13} - \frac{7}{68} a^{12} - \frac{1059245}{14070976} a^{11} - \frac{47}{272} a^{10} + \frac{58391831}{239206592} a^{9} - \frac{5}{34} a^{8} + \frac{13515793}{59801648} a^{7} + \frac{33}{68} a^{6} - \frac{47071415}{119603296} a^{5} + \frac{11}{272} a^{4} + \frac{2804819}{7475206} a^{3} + \frac{3}{68} a^{2} - \frac{79503}{3737603} a - \frac{7}{17}$, $\frac{1}{84567116008217470262422553261312} a^{30} + \frac{41150504136136911876065}{21141779002054367565605638315328} a^{28} - \frac{54048236396413467409215199}{154319554759520931135807578944} a^{26} - \frac{1106558163114461918813664727}{1243634058944374562682684606784} a^{24} - \frac{31177622024325403788928677871}{21141779002054367565605638315328} a^{22} + \frac{77479106297715728212230243523}{21141779002054367565605638315328} a^{20} - \frac{2555301804277694842055361798913}{42283558004108735131211276630656} a^{18} - \frac{1}{8} a^{17} + \frac{977383509659628230511066289871}{10570889501027183782802819157664} a^{16} + \frac{1813891406256474595605181680519}{21141779002054367565605638315328} a^{14} - \frac{1}{4} a^{13} - \frac{3288666259101704025906587070103}{21141779002054367565605638315328} a^{12} - \frac{1}{4} a^{11} - \frac{42701074337579909975234192779}{1243634058944374562682684606784} a^{10} - \frac{3695869201339368929836237801475}{21141779002054367565605638315328} a^{8} - \frac{1}{4} a^{7} - \frac{41569318085026221409568349196263}{84567116008217470262422553261312} a^{6} + \frac{3}{8} a^{5} + \frac{5883223821574092979410963097331}{21141779002054367565605638315328} a^{4} - \frac{1}{2} a^{3} + \frac{183770892128376852209166928765}{5285444750513591891401409578832} a^{2} - \frac{1}{2} a + \frac{7319939122720848462054573968}{330340296907099493212588098677}$, $\frac{1}{338268464032869881049690213045248} a^{31} + \frac{41150504136136911876065}{84567116008217470262422553261312} a^{29} + \frac{229627415735058832472784027}{617278219038083724543230315776} a^{27} + \frac{20052075569065852464001593603}{84567116008217470262422553261312} a^{25} - \frac{31177622024325403788928677871}{84567116008217470262422553261312} a^{23} - \frac{1}{272} a^{22} - \frac{116838715412342797206939226287}{84567116008217470262422553261312} a^{21} + \frac{7316043538593278249238447267435}{169134232016434940524845106522624} a^{19} - \frac{1}{34} a^{18} - \frac{1820793122965214535524974075393}{42283558004108735131211276630656} a^{17} + \frac{31}{272} a^{16} + \frac{4106841702435165195551381424277}{84567116008217470262422553261312} a^{15} - \frac{3}{68} a^{14} - \frac{7991157544485120341050488239505}{84567116008217470262422553261312} a^{13} + \frac{5}{34} a^{12} + \frac{9689516979920278492888502304573}{84567116008217470262422553261312} a^{11} + \frac{21}{272} a^{10} - \frac{6144273754886106350117773121081}{84567116008217470262422553261312} a^{9} - \frac{5}{34} a^{8} + \frac{54345958711058666737333701101953}{338268464032869881049690213045248} a^{7} + \frac{4}{17} a^{6} + \frac{40549523214648533914190796511435}{84567116008217470262422553261312} a^{5} - \frac{91}{272} a^{4} + \frac{2671039010017125977574536142333}{21141779002054367565605638315328} a^{3} - \frac{31}{68} a^{2} - \frac{245293229100355234582865736785}{1321361187628397972850352394708} a - \frac{7}{17}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{31733846347289050006707609339}{338268464032869881049690213045248} a^{31} + \frac{159066371668502704786194320775}{84567116008217470262422553261312} a^{29} + \frac{13722982620419582052588929353}{617278219038083724543230315776} a^{27} + \frac{15544719819385212136664947501213}{84567116008217470262422553261312} a^{25} + \frac{98127949168048442982113604227447}{84567116008217470262422553261312} a^{23} + \frac{465912278340159774396442411472379}{84567116008217470262422553261312} a^{21} + \frac{3413485261243466901479279119063505}{169134232016434940524845106522624} a^{19} + \frac{2291173245929342645683680194076411}{42283558004108735131211276630656} a^{17} + \frac{8247282890832293527114323360526327}{84567116008217470262422553261312} a^{15} + \frac{151071612981110777014047569238667}{1966677116470173727033082633984} a^{13} + \frac{6552031141224874223212789373396867}{84567116008217470262422553261312} a^{11} + \frac{11119375391339031974950856247776221}{84567116008217470262422553261312} a^{9} + \frac{13520292253964077881824453407256171}{338268464032869881049690213045248} a^{7} - \frac{1617629871718382246042141050801871}{84567116008217470262422553261312} a^{5} + \frac{18716742129237302188519841608487}{1243634058944374562682684606784} a^{3} - \frac{3516851695558134935161606145415}{1321361187628397972850352394708} a \) (order $12$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2205277237958.931 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times C_2^2\wr C_2$ (as 32T1369):
A solvable group of order 128 |
The 56 conjugacy class representatives for $C_2^2\times C_2^2\wr C_2$ are not computed |
Character table for $C_2^2\times C_2^2\wr C_2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
$17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |