Normalized defining polynomial
\( x^{32} + 34 x^{30} + 884 x^{28} + 21488 x^{26} + 512992 x^{24} + 4670240 x^{22} + 33625728 x^{20} + 215959296 x^{18} + 1232647424 x^{16} + 4764273664 x^{14} + 16712689664 x^{12} + 51808331776 x^{10} + 120057683968 x^{8} + 58841546752 x^{6} + 28736569344 x^{4} + 13684080640 x^{2} + 5473632256 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(475652402320384421216839760983630708473856000000000000000000000000=2^{48}\cdot 5^{24}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(680=2^{3}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{680}(1,·)$, $\chi_{680}(389,·)$, $\chi_{680}(137,·)$, $\chi_{680}(273,·)$, $\chi_{680}(661,·)$, $\chi_{680}(89,·)$, $\chi_{680}(409,·)$, $\chi_{680}(33,·)$, $\chi_{680}(169,·)$, $\chi_{680}(349,·)$, $\chi_{680}(53,·)$, $\chi_{680}(441,·)$, $\chi_{680}(189,·)$, $\chi_{680}(117,·)$, $\chi_{680}(577,·)$, $\chi_{680}(77,·)$, $\chi_{680}(461,·)$, $\chi_{680}(81,·)$, $\chi_{680}(597,·)$, $\chi_{680}(217,·)$, $\chi_{680}(93,·)$, $\chi_{680}(353,·)$, $\chi_{680}(229,·)$, $\chi_{680}(361,·)$, $\chi_{680}(621,·)$, $\chi_{680}(637,·)$, $\chi_{680}(497,·)$, $\chi_{680}(501,·)$, $\chi_{680}(489,·)$, $\chi_{680}(633,·)$, $\chi_{680}(253,·)$, $\chi_{680}(213,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{272} a^{8}$, $\frac{1}{272} a^{9}$, $\frac{1}{544} a^{10}$, $\frac{1}{544} a^{11}$, $\frac{1}{1088} a^{12}$, $\frac{1}{1088} a^{13}$, $\frac{1}{2176} a^{14}$, $\frac{1}{2176} a^{15}$, $\frac{1}{73984} a^{16}$, $\frac{1}{73984} a^{17}$, $\frac{1}{147968} a^{18}$, $\frac{1}{147968} a^{19}$, $\frac{1}{295936} a^{20}$, $\frac{1}{295936} a^{21}$, $\frac{1}{591872} a^{22}$, $\frac{1}{591872} a^{23}$, $\frac{1}{1046429696} a^{24} - \frac{1}{7694336} a^{22} - \frac{5}{3847168} a^{20} - \frac{11}{7694336} a^{18} - \frac{3}{28288} a^{14} + \frac{1}{56576} a^{12} + \frac{3}{7072} a^{10} + \frac{21}{416} a^{6} - \frac{3}{26} a^{4} - \frac{2}{13} a^{2} + \frac{25}{52}$, $\frac{1}{1046429696} a^{25} - \frac{1}{7694336} a^{23} - \frac{5}{3847168} a^{21} - \frac{11}{7694336} a^{19} - \frac{3}{28288} a^{15} + \frac{1}{56576} a^{13} + \frac{3}{7072} a^{11} + \frac{21}{416} a^{7} - \frac{3}{26} a^{5} - \frac{2}{13} a^{3} + \frac{25}{52} a$, $\frac{1}{296941996194331983872} a^{26} + \frac{61991704677}{148470998097165991936} a^{24} - \frac{49831212731}{1091698515420338176} a^{22} - \frac{3636489284411}{2183397030840676352} a^{20} - \frac{3688650149179}{1091698515420338176} a^{18} + \frac{310171099973}{68231157213771136} a^{16} + \frac{2504304436085}{16054389932652032} a^{14} + \frac{674890205777}{8027194966326016} a^{12} - \frac{635819889691}{1003399370790752} a^{10} + \frac{3209236976705}{2006798741581504} a^{8} - \frac{1069851699583}{59023492399456} a^{6} + \frac{331588449241}{3688968274966} a^{4} - \frac{983561091411}{14755873099864} a^{2} - \frac{3511760935003}{7377936549932}$, $\frac{1}{296941996194331983872} a^{27} + \frac{61991704677}{148470998097165991936} a^{25} - \frac{49831212731}{1091698515420338176} a^{23} - \frac{3636489284411}{2183397030840676352} a^{21} - \frac{3688650149179}{1091698515420338176} a^{19} + \frac{310171099973}{68231157213771136} a^{17} + \frac{2504304436085}{16054389932652032} a^{15} + \frac{674890205777}{8027194966326016} a^{13} - \frac{635819889691}{1003399370790752} a^{11} + \frac{3209236976705}{2006798741581504} a^{9} - \frac{1069851699583}{59023492399456} a^{7} + \frac{331588449241}{3688968274966} a^{5} - \frac{983561091411}{14755873099864} a^{3} - \frac{3511760935003}{7377936549932} a$, $\frac{1}{593883992388663967744} a^{28} + \frac{65120407865}{148470998097165991936} a^{24} - \frac{1874032384883}{4366794061681352704} a^{22} - \frac{325910746843}{272924628855084544} a^{20} - \frac{495001280931}{1091698515420338176} a^{18} - \frac{2349029184811}{545849257710169088} a^{16} + \frac{718231177373}{4013597483163008} a^{14} - \frac{529975297435}{8027194966326016} a^{12} - \frac{1658444996947}{4013597483163008} a^{10} + \frac{24813687473}{38592283491952} a^{8} - \frac{2724415687387}{59023492399456} a^{6} + \frac{327096262257}{29511746199728} a^{4} + \frac{122595807743}{3688968274966} a^{2} - \frac{3299769935687}{7377936549932}$, $\frac{1}{593883992388663967744} a^{29} + \frac{65120407865}{148470998097165991936} a^{25} - \frac{1874032384883}{4366794061681352704} a^{23} - \frac{325910746843}{272924628855084544} a^{21} - \frac{495001280931}{1091698515420338176} a^{19} - \frac{2349029184811}{545849257710169088} a^{17} + \frac{718231177373}{4013597483163008} a^{15} - \frac{529975297435}{8027194966326016} a^{13} - \frac{1658444996947}{4013597483163008} a^{11} + \frac{24813687473}{38592283491952} a^{9} - \frac{2724415687387}{59023492399456} a^{7} + \frac{327096262257}{29511746199728} a^{5} + \frac{122595807743}{3688968274966} a^{3} - \frac{3299769935687}{7377936549932} a$, $\frac{1}{1187767984777327935488} a^{30} - \frac{173352617025}{136462314427542272} a^{20} - \frac{563057580707}{1003399370790752} a^{10} + \frac{568026535487}{7377936549932}$, $\frac{1}{1187767984777327935488} a^{31} - \frac{173352617025}{136462314427542272} a^{21} - \frac{563057580707}{1003399370790752} a^{11} + \frac{568026535487}{7377936549932} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{30271229}{1427605750934288384} a^{30} + \frac{1907087427}{2855211501868576768} a^{28} + \frac{756780725}{44612679716696512} a^{26} + \frac{1169193691501}{2855211501868576768} a^{24} + \frac{2028172343}{207863388313088} a^{22} + \frac{189709792143}{2624275277452736} a^{20} + \frac{2499949446965}{5248550554905472} a^{18} + \frac{447015238643}{154369133967808} a^{16} + \frac{148658843813}{9648070872988} a^{14} + \frac{1553670828425}{38592283491952} a^{12} + \frac{2469133335843}{19296141745976} a^{10} + \frac{44498706630}{141883395191} a^{8} + \frac{43620840989}{283766790382} a^{6} - \frac{579387875453}{141883395191} a^{4} + \frac{5085566472}{141883395191} a^{2} + \frac{2058443572}{141883395191} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||