Normalized defining polynomial
\( x^{32} + 14 x^{30} - 376 x^{28} - 5912 x^{26} + 26112 x^{24} + 701280 x^{22} + 3957248 x^{20} + 20680576 x^{18} + 132440064 x^{16} - 322428416 x^{14} - 3522902016 x^{12} + 9379649536 x^{10} + 49845997568 x^{8} - 269225361408 x^{6} + 469219672064 x^{4} - 223409602560 x^{2} + 132892327936 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(475652402320384421216839760983630708473856000000000000000000000000=2^{48}\cdot 5^{24}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(680=2^{3}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{680}(1,·)$, $\chi_{680}(389,·)$, $\chi_{680}(257,·)$, $\chi_{680}(393,·)$, $\chi_{680}(13,·)$, $\chi_{680}(621,·)$, $\chi_{680}(661,·)$, $\chi_{680}(409,·)$, $\chi_{680}(157,·)$, $\chi_{680}(417,·)$, $\chi_{680}(293,·)$, $\chi_{680}(297,·)$, $\chi_{680}(557,·)$, $\chi_{680}(349,·)$, $\chi_{680}(433,·)$, $\chi_{680}(441,·)$, $\chi_{680}(189,·)$, $\chi_{680}(169,·)$, $\chi_{680}(373,·)$, $\chi_{680}(457,·)$, $\chi_{680}(461,·)$, $\chi_{680}(81,·)$, $\chi_{680}(89,·)$, $\chi_{680}(477,·)$, $\chi_{680}(613,·)$, $\chi_{680}(229,·)$, $\chi_{680}(593,·)$, $\chi_{680}(489,·)$, $\chi_{680}(237,·)$, $\chi_{680}(501,·)$, $\chi_{680}(361,·)$, $\chi_{680}(553,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{2} a$, $\frac{1}{64} a^{8} - \frac{1}{8} a^{2}$, $\frac{1}{64} a^{9} - \frac{1}{8} a^{3}$, $\frac{1}{128} a^{10} - \frac{1}{16} a^{4}$, $\frac{1}{128} a^{11} - \frac{1}{16} a^{5}$, $\frac{1}{256} a^{12} - \frac{1}{32} a^{6}$, $\frac{1}{256} a^{13} - \frac{1}{32} a^{7}$, $\frac{1}{512} a^{14} - \frac{1}{8} a^{2}$, $\frac{1}{1024} a^{15} - \frac{1}{16} a^{3}$, $\frac{1}{8192} a^{16} - \frac{1}{1024} a^{14} + \frac{1}{512} a^{10} - \frac{1}{16} a^{6} + \frac{13}{128} a^{4} + \frac{1}{16} a^{2} - \frac{1}{2}$, $\frac{1}{8192} a^{17} + \frac{1}{512} a^{11} + \frac{13}{128} a^{5}$, $\frac{1}{16384} a^{18} + \frac{1}{1024} a^{12} + \frac{13}{256} a^{6}$, $\frac{1}{16384} a^{19} + \frac{1}{1024} a^{13} - \frac{3}{256} a^{7} - \frac{1}{2} a$, $\frac{1}{131072} a^{20} + \frac{1}{65536} a^{18} + \frac{1}{32768} a^{16} + \frac{7}{8192} a^{14} - \frac{3}{4096} a^{12} + \frac{5}{2048} a^{10} + \frac{13}{2048} a^{8} - \frac{59}{1024} a^{6} + \frac{5}{512} a^{4} + \frac{13}{64} a^{2} - \frac{3}{8}$, $\frac{1}{131072} a^{21} + \frac{1}{65536} a^{19} + \frac{1}{32768} a^{17} - \frac{1}{8192} a^{15} - \frac{3}{4096} a^{13} + \frac{5}{2048} a^{11} + \frac{13}{2048} a^{9} + \frac{5}{1024} a^{7} + \frac{5}{512} a^{5} - \frac{15}{64} a^{3} + \frac{1}{8} a$, $\frac{1}{262144} a^{22} + \frac{1}{32768} a^{16} - \frac{1}{4096} a^{14} - \frac{1}{512} a^{12} + \frac{11}{4096} a^{10} - \frac{1}{256} a^{8} + \frac{1}{32} a^{6} - \frac{13}{512} a^{4} - \frac{13}{64} a^{2} - \frac{1}{8}$, $\frac{1}{23330816} a^{23} + \frac{31}{11665408} a^{21} + \frac{95}{5832704} a^{19} + \frac{9}{729088} a^{17} - \frac{217}{729088} a^{15} - \frac{501}{364544} a^{13} - \frac{1047}{364544} a^{11} + \frac{203}{182272} a^{9} + \frac{1499}{91136} a^{7} + \frac{1873}{22784} a^{5} - \frac{9}{2848} a^{3} - \frac{43}{356} a$, $\frac{1}{46661632} a^{24} + \frac{31}{23330816} a^{22} + \frac{3}{5832704} a^{20} - \frac{53}{5832704} a^{18} - \frac{167}{2916352} a^{16} - \frac{103}{182272} a^{14} - \frac{513}{729088} a^{12} + \frac{25}{364544} a^{10} + \frac{171}{91136} a^{8} + \frac{3301}{91136} a^{6} + \frac{4111}{45568} a^{4} + \frac{991}{5696} a^{2} - \frac{1}{8}$, $\frac{1}{93323264} a^{25} - \frac{65}{23330816} a^{21} + \frac{7}{2916352} a^{19} - \frac{37}{5832704} a^{17} - \frac{271}{1458176} a^{15} + \frac{1001}{1458176} a^{13} - \frac{313}{364544} a^{11} - \frac{77}{364544} a^{9} - \frac{2627}{91136} a^{7} + \frac{8135}{91136} a^{5} + \frac{1015}{11392} a^{3} - \frac{93}{1424} a$, $\frac{1}{101162418176} a^{26} + \frac{251}{25290604544} a^{24} - \frac{34521}{25290604544} a^{22} + \frac{3697}{3161325568} a^{20} + \frac{40641}{6322651136} a^{18} - \frac{37115}{1580662784} a^{16} - \frac{1232871}{1580662784} a^{14} + \frac{18183}{12348928} a^{12} + \frac{434155}{395165696} a^{10} + \frac{393}{1110016} a^{8} - \frac{4474695}{98791424} a^{6} + \frac{696325}{12348928} a^{4} + \frac{228897}{1543616} a^{2} + \frac{239}{542}$, $\frac{1}{202324836352} a^{27} + \frac{251}{50581209088} a^{25} + \frac{167}{50581209088} a^{23} + \frac{1805}{1580662784} a^{21} - \frac{40659}{12645302272} a^{19} + \frac{56651}{3161325568} a^{17} - \frac{272447}{3161325568} a^{15} - \frac{123097}{197582848} a^{13} - \frac{188061}{790331392} a^{11} - \frac{254993}{197582848} a^{9} - \frac{233003}{197582848} a^{7} - \frac{333163}{6174464} a^{5} - \frac{36123}{385904} a^{3} + \frac{135219}{385904} a$, $\frac{1}{40869616943104} a^{28} - \frac{39}{10217404235776} a^{26} - \frac{56849}{10217404235776} a^{24} + \frac{25823}{1277175529472} a^{22} - \frac{7019883}{2554351058944} a^{20} + \frac{2229429}{638587764736} a^{18} - \frac{14844487}{638587764736} a^{16} - \frac{29381343}{79823470592} a^{14} - \frac{293195789}{159646941184} a^{12} + \frac{11350877}{39911735296} a^{10} - \frac{36945115}{39911735296} a^{8} + \frac{151742105}{4988966912} a^{6} - \frac{15453489}{155905216} a^{4} - \frac{13897585}{77952608} a^{2} + \frac{10159}{109484}$, $\frac{1}{40869616943104} a^{29} + \frac{23}{20434808471552} a^{27} - \frac{6147}{10217404235776} a^{25} - \frac{98809}{5108702117888} a^{23} + \frac{8597141}{2554351058944} a^{21} - \frac{961509}{1277175529472} a^{19} + \frac{8204319}{638587764736} a^{17} - \frac{88986711}{319293882368} a^{15} - \frac{290181141}{159646941184} a^{13} - \frac{195772255}{79823470592} a^{11} + \frac{120441771}{39911735296} a^{9} + \frac{352642845}{19955867648} a^{7} + \frac{108484531}{1247241728} a^{5} - \frac{483861}{155905216} a^{3} - \frac{12122731}{38976304} a$, $\frac{1}{18058685267633370027771879004596913307648} a^{30} + \frac{33426120723022209934278705}{4514671316908342506942969751149228326912} a^{28} + \frac{8514009375840411336909516153}{4514671316908342506942969751149228326912} a^{26} + \frac{2064620027696687062443008191317}{282166957306771406683935609446826770432} a^{24} - \frac{1925040015305416971791718807732909}{1128667829227085626735742437787307081728} a^{22} - \frac{959002368601018176698460245834823}{282166957306771406683935609446826770432} a^{20} - \frac{5424142441525206131090966847780141}{282166957306771406683935609446826770432} a^{18} - \frac{4096988610150697986606332837283}{68888417311223487959945217150104192} a^{16} + \frac{8721893348915772610552412518070285}{70541739326692851670983902361706692608} a^{14} - \frac{17201895811751541345068693525011467}{17635434831673212917745975590426673152} a^{12} - \frac{4006046235884328251471820179030725}{17635434831673212917745975590426673152} a^{10} + \frac{7845887064152525422685028821622675}{1102214676979575807359123474401667072} a^{8} - \frac{92225121562848252117369292542405291}{2204429353959151614718246948803334144} a^{6} + \frac{7224663265676308749019289574804789}{68888417311223487959945217150104192} a^{4} - \frac{695702097730407663753245720009945}{4305526081951467997496576071881512} a^{2} - \frac{4151748860656034332676485636381}{48376697550016494353894113167208}$, $\frac{1}{18058685267633370027771879004596913307648} a^{31} + \frac{33426120723022209934278705}{4514671316908342506942969751149228326912} a^{29} + \frac{8514009375840411336909516153}{4514671316908342506942969751149228326912} a^{27} - \frac{1917847138358687669350747763267}{564333914613542813367871218893653540864} a^{25} + \frac{10027886695242802364045718955411}{1128667829227085626735742437787307081728} a^{23} - \frac{318011126063299626509363246369317}{282166957306771406683935609446826770432} a^{21} - \frac{3102060959124414402104049415754157}{282166957306771406683935609446826770432} a^{19} + \frac{472353888947468893408182349319029}{35270869663346425835491951180853346304} a^{17} - \frac{8548587676440115873787785882622971}{70541739326692851670983902361706692608} a^{15} + \frac{25938024228475667495016381891846267}{17635434831673212917745975590426673152} a^{13} + \frac{105973055867073768609179440181955}{17635434831673212917745975590426673152} a^{11} - \frac{12650923548810862784217655908592637}{2204429353959151614718246948803334144} a^{9} - \frac{63755435054663545190102606943503383}{2204429353959151614718246948803334144} a^{7} - \frac{11206005842494307141881399070437999}{551107338489787903679561737200833536} a^{5} + \frac{2009086908336707658824556968883753}{68888417311223487959945217150104192} a^{3} - \frac{878094302653071532483860018631541}{8611052163902935994993152143763024} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||