Normalized defining polynomial
\( x^{32} + 672 x^{30} + 204624 x^{28} + 37340352 x^{26} + 4550855400 x^{24} + 390766783680 x^{22} + 24302688046560 x^{20} + 1108202574923136 x^{18} + 37090154929458708 x^{16} + 903064641760733760 x^{14} + 15688695730952383776 x^{12} + 188264348771428605312 x^{10} + 1482581746575000266832 x^{8} + 7058769773166802889856 x^{6} + 17646924432917007224640 x^{4} + 17439313557235630669056 x^{2} + 2861137380483970656642 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{21} a^{2}$, $\frac{1}{21} a^{3}$, $\frac{1}{441} a^{4}$, $\frac{1}{441} a^{5}$, $\frac{1}{9261} a^{6}$, $\frac{1}{9261} a^{7}$, $\frac{1}{194481} a^{8}$, $\frac{1}{194481} a^{9}$, $\frac{1}{4084101} a^{10}$, $\frac{1}{4084101} a^{11}$, $\frac{1}{85766121} a^{12}$, $\frac{1}{85766121} a^{13}$, $\frac{1}{1801088541} a^{14}$, $\frac{1}{1801088541} a^{15}$, $\frac{1}{37822859361} a^{16}$, $\frac{1}{37822859361} a^{17}$, $\frac{1}{794280046581} a^{18}$, $\frac{1}{794280046581} a^{19}$, $\frac{1}{16679880978201} a^{20}$, $\frac{1}{16679880978201} a^{21}$, $\frac{1}{350277500542221} a^{22}$, $\frac{1}{350277500542221} a^{23}$, $\frac{1}{7355827511386641} a^{24}$, $\frac{1}{7355827511386641} a^{25}$, $\frac{1}{154472377739119461} a^{26}$, $\frac{1}{154472377739119461} a^{27}$, $\frac{1}{3243919932521508681} a^{28}$, $\frac{1}{3243919932521508681} a^{29}$, $\frac{1}{68122318582951682301} a^{30}$, $\frac{1}{68122318582951682301} a^{31}$
Class group and class number
Not computed
Unit group
Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
A cyclic group of order 32 |
The 32 conjugacy class representatives for $C_{32}$ |
Character table for $C_{32}$ is not computed |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), \(\Q(\zeta_{64})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | $32$ | R | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
3 | Data not computed | ||||||
7 | Data not computed |