Normalized defining polynomial
\( x^{32} + 2 x^{30} + 9 x^{28} + 4 x^{26} + 26 x^{24} - 45 x^{22} + 10 x^{20} - 403 x^{18} - 171 x^{16} - 1612 x^{14} + 160 x^{12} - 2880 x^{10} + 6656 x^{8} + 4096 x^{6} + 36864 x^{4} + 32768 x^{2} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(44580746322432044939368312527587514829553937678336\)\(\medspace = 2^{32}\cdot 3^{24}\cdot 61^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $35.61$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 61$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} - \frac{2}{9} a^{4} - \frac{2}{9} a^{2} - \frac{2}{9}$, $\frac{1}{18} a^{17} - \frac{1}{9} a^{15} + \frac{1}{18} a^{13} - \frac{1}{9} a^{11} - \frac{1}{9} a^{9} - \frac{5}{18} a^{7} - \frac{4}{9} a^{5} - \frac{5}{18} a^{3} - \frac{5}{18} a$, $\frac{1}{36} a^{18} - \frac{1}{18} a^{16} + \frac{1}{36} a^{14} + \frac{1}{9} a^{12} - \frac{1}{18} a^{10} - \frac{5}{36} a^{8} - \frac{1}{18} a^{6} + \frac{13}{36} a^{4} + \frac{13}{36} a^{2} - \frac{1}{3}$, $\frac{1}{72} a^{19} - \frac{1}{36} a^{17} + \frac{1}{72} a^{15} - \frac{1}{9} a^{13} + \frac{5}{36} a^{11} - \frac{5}{72} a^{9} - \frac{13}{36} a^{7} - \frac{35}{72} a^{5} - \frac{23}{72} a^{3} + \frac{1}{3} a$, $\frac{1}{144} a^{20} - \frac{1}{72} a^{18} + \frac{1}{144} a^{16} + \frac{1}{9} a^{14} + \frac{5}{72} a^{12} - \frac{5}{144} a^{10} - \frac{1}{72} a^{8} + \frac{37}{144} a^{6} + \frac{49}{144} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{288} a^{21} - \frac{1}{144} a^{19} + \frac{1}{288} a^{17} - \frac{1}{9} a^{15} + \frac{5}{144} a^{13} + \frac{43}{288} a^{11} - \frac{1}{144} a^{9} - \frac{59}{288} a^{7} + \frac{1}{288} a^{5} + \frac{1}{3} a^{3} - \frac{1}{6} a$, $\frac{1}{1728} a^{22} - \frac{1}{864} a^{20} + \frac{1}{1728} a^{18} - \frac{1}{18} a^{16} + \frac{23}{288} a^{14} - \frac{71}{576} a^{12} + \frac{7}{96} a^{10} + \frac{29}{192} a^{8} + \frac{89}{192} a^{6} - \frac{17}{54} a^{4} + \frac{41}{108} a^{2} - \frac{13}{27}$, $\frac{1}{3456} a^{23} - \frac{1}{1728} a^{21} + \frac{1}{3456} a^{19} - \frac{1}{36} a^{17} + \frac{23}{576} a^{15} - \frac{71}{1152} a^{13} - \frac{25}{192} a^{11} - \frac{35}{384} a^{9} + \frac{25}{384} a^{7} - \frac{53}{108} a^{5} - \frac{31}{216} a^{3} - \frac{2}{27} a$, $\frac{1}{6912} a^{24} - \frac{1}{3456} a^{22} + \frac{1}{6912} a^{20} - \frac{1}{72} a^{18} + \frac{23}{1152} a^{16} - \frac{71}{2304} a^{14} + \frac{13}{128} a^{12} - \frac{35}{768} a^{10} + \frac{25}{768} a^{8} - \frac{17}{216} a^{6} + \frac{185}{432} a^{4} - \frac{1}{27} a^{2} - \frac{1}{3}$, $\frac{1}{13824} a^{25} - \frac{1}{6912} a^{23} + \frac{1}{13824} a^{21} - \frac{1}{144} a^{19} + \frac{23}{2304} a^{17} - \frac{71}{4608} a^{15} + \frac{13}{256} a^{13} + \frac{221}{1536} a^{11} + \frac{25}{1536} a^{9} - \frac{89}{432} a^{7} + \frac{41}{864} a^{5} + \frac{13}{27} a^{3} - \frac{1}{2} a$, $\frac{1}{27648} a^{26} - \frac{1}{13824} a^{24} + \frac{1}{27648} a^{22} - \frac{1}{288} a^{20} + \frac{23}{4608} a^{18} - \frac{71}{9216} a^{16} - \frac{217}{1536} a^{14} + \frac{221}{3072} a^{12} - \frac{487}{3072} a^{10} - \frac{89}{864} a^{8} - \frac{823}{1728} a^{6} - \frac{5}{54} a^{4} - \frac{1}{12} a^{2}$, $\frac{1}{55296} a^{27} - \frac{1}{27648} a^{25} + \frac{1}{55296} a^{23} - \frac{1}{576} a^{21} + \frac{23}{9216} a^{19} - \frac{71}{18432} a^{17} - \frac{217}{3072} a^{15} - \frac{803}{6144} a^{13} + \frac{179}{2048} a^{11} - \frac{89}{1728} a^{9} - \frac{247}{3456} a^{7} - \frac{23}{108} a^{5} - \frac{1}{24} a^{3} - \frac{1}{2} a$, $\frac{1}{110592} a^{28} - \frac{1}{55296} a^{26} + \frac{1}{110592} a^{24} - \frac{1}{3456} a^{22} + \frac{5}{55296} a^{20} - \frac{149}{110592} a^{18} - \frac{217}{6144} a^{16} + \frac{287}{4096} a^{14} - \frac{295}{12288} a^{12} + \frac{355}{3456} a^{10} - \frac{1123}{6912} a^{8} - \frac{439}{1728} a^{6} + \frac{23}{432} a^{4} + \frac{19}{54} a^{2} + \frac{2}{27}$, $\frac{1}{221184} a^{29} - \frac{1}{110592} a^{27} + \frac{1}{221184} a^{25} - \frac{1}{6912} a^{23} + \frac{5}{110592} a^{21} - \frac{149}{221184} a^{19} - \frac{217}{12288} a^{17} + \frac{287}{8192} a^{15} - \frac{295}{24576} a^{13} - \frac{797}{6912} a^{11} - \frac{1123}{13824} a^{9} + \frac{137}{3456} a^{7} + \frac{167}{864} a^{5} + \frac{19}{108} a^{3} + \frac{10}{27} a$, $\frac{1}{269402112} a^{30} + \frac{7}{6414336} a^{28} - \frac{613}{89800704} a^{26} - \frac{193}{4810752} a^{24} - \frac{881}{4988928} a^{22} - \frac{5493}{3325952} a^{20} - \frac{1088293}{134701056} a^{18} - \frac{248083}{29933568} a^{16} + \frac{704779}{9977856} a^{14} - \frac{778427}{33675264} a^{12} + \frac{35941}{5612544} a^{10} - \frac{32171}{1403136} a^{8} - \frac{73}{150336} a^{6} + \frac{533}{14616} a^{4} - \frac{367}{1044} a^{2} + \frac{3971}{16443}$, $\frac{1}{538804224} a^{31} + \frac{7}{12828672} a^{29} - \frac{613}{179601408} a^{27} - \frac{193}{9621504} a^{25} - \frac{881}{9977856} a^{23} - \frac{5493}{6651904} a^{21} - \frac{1088293}{269402112} a^{19} - \frac{248083}{59867136} a^{17} - \frac{2621173}{19955712} a^{15} + \frac{10446661}{67350528} a^{13} + \frac{35941}{11225088} a^{11} + \frac{435541}{2806272} a^{9} - \frac{50185}{300672} a^{7} + \frac{533}{29232} a^{5} + \frac{677}{2088} a^{3} + \frac{3971}{32886} a$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{3713}{44900352} a^{31} + \frac{259}{801792} a^{29} + \frac{16141}{44900352} a^{27} + \frac{491}{356352} a^{25} - \frac{27499}{22450176} a^{23} + \frac{123119}{44900352} a^{21} - \frac{205325}{11225088} a^{19} + \frac{1051}{14966784} a^{17} - \frac{1341583}{14966784} a^{15} + \frac{390101}{22450176} a^{13} - \frac{696347}{2806272} a^{11} + \frac{125497}{350784} a^{9} - \frac{7705}{33408} a^{7} + \frac{92447}{43848} a^{5} + \frac{1279}{1566} a^{3} + \frac{31519}{5481} a \) (order $12$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 333896890255.2903 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times \SL(2,3)$ (as 32T405):
A solvable group of order 96 |
The 28 conjugacy class representatives for $C_2^2\times \SL(2,3)$ |
Character table for $C_2^2\times \SL(2,3)$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
$3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
$61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.6.4.1 | $x^{6} + 305 x^{3} + 29768$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
61.6.4.1 | $x^{6} + 305 x^{3} + 29768$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
61.6.4.1 | $x^{6} + 305 x^{3} + 29768$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
61.6.4.1 | $x^{6} + 305 x^{3} + 29768$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |