Properties

Label 32.0.43102280946...0096.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 13^{24}$
Root discriminant $47.43$
Ramified primes $2, 3, 13$
Class number $192$ (GRH)
Class group $[4, 4, 12]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6561, 0, 0, 0, 24948, 0, 0, 0, 65218, 0, 0, 0, 108354, 0, 0, 0, 125559, 0, 0, 0, 9266, 0, 0, 0, 363, 0, 0, 0, 27, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 27*x^28 + 363*x^24 + 9266*x^20 + 125559*x^16 + 108354*x^12 + 65218*x^8 + 24948*x^4 + 6561)
 
gp: K = bnfinit(x^32 + 27*x^28 + 363*x^24 + 9266*x^20 + 125559*x^16 + 108354*x^12 + 65218*x^8 + 24948*x^4 + 6561, 1)
 

Normalized defining polynomial

\( x^{32} + 27 x^{28} + 363 x^{24} + 9266 x^{20} + 125559 x^{16} + 108354 x^{12} + 65218 x^{8} + 24948 x^{4} + 6561 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(431022809469660770170681990696218941342911988389380096=2^{64}\cdot 3^{16}\cdot 13^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $47.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(312=2^{3}\cdot 3\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{312}(1,·)$, $\chi_{312}(259,·)$, $\chi_{312}(5,·)$, $\chi_{312}(265,·)$, $\chi_{312}(131,·)$, $\chi_{312}(151,·)$, $\chi_{312}(25,·)$, $\chi_{312}(155,·)$, $\chi_{312}(157,·)$, $\chi_{312}(287,·)$, $\chi_{312}(161,·)$, $\chi_{312}(47,·)$, $\chi_{312}(307,·)$, $\chi_{312}(53,·)$, $\chi_{312}(311,·)$, $\chi_{312}(31,·)$, $\chi_{312}(181,·)$, $\chi_{312}(73,·)$, $\chi_{312}(203,·)$, $\chi_{312}(77,·)$, $\chi_{312}(79,·)$, $\chi_{312}(209,·)$, $\chi_{312}(83,·)$, $\chi_{312}(187,·)$, $\chi_{312}(229,·)$, $\chi_{312}(103,·)$, $\chi_{312}(233,·)$, $\chi_{312}(235,·)$, $\chi_{312}(109,·)$, $\chi_{312}(239,·)$, $\chi_{312}(281,·)$, $\chi_{312}(125,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{4}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{5}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{6}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{15} + \frac{1}{9} a^{11} - \frac{2}{27} a^{7} + \frac{4}{27} a^{3}$, $\frac{1}{4941} a^{20} + \frac{88}{4941} a^{16} + \frac{121}{1647} a^{12} - \frac{1955}{4941} a^{8} - \frac{386}{4941} a^{4} - \frac{27}{61}$, $\frac{1}{4941} a^{21} + \frac{88}{4941} a^{17} + \frac{121}{1647} a^{13} - \frac{308}{4941} a^{9} - \frac{2033}{4941} a^{5} - \frac{20}{183} a$, $\frac{1}{4941} a^{22} + \frac{88}{4941} a^{18} - \frac{62}{1647} a^{14} - \frac{308}{4941} a^{10} - \frac{2033}{4941} a^{6} - \frac{121}{549} a^{2}$, $\frac{1}{4941} a^{23} + \frac{88}{4941} a^{19} - \frac{62}{1647} a^{15} - \frac{308}{4941} a^{11} - \frac{2033}{4941} a^{7} - \frac{121}{549} a^{3}$, $\frac{1}{1546533} a^{24} - \frac{76}{1546533} a^{20} + \frac{16675}{1546533} a^{16} - \frac{132308}{1546533} a^{12} - \frac{414328}{1546533} a^{8} - \frac{369299}{1546533} a^{4} - \frac{4356}{19093}$, $\frac{1}{1546533} a^{25} - \frac{76}{1546533} a^{21} + \frac{16675}{1546533} a^{17} - \frac{132308}{1546533} a^{13} + \frac{101183}{1546533} a^{9} + \frac{661723}{1546533} a^{5} + \frac{6025}{57279} a$, $\frac{1}{1546533} a^{26} - \frac{76}{1546533} a^{22} + \frac{16675}{1546533} a^{18} + \frac{39529}{1546533} a^{14} + \frac{101183}{1546533} a^{10} + \frac{661723}{1546533} a^{6} + \frac{37168}{171837} a^{2}$, $\frac{1}{1546533} a^{27} - \frac{76}{1546533} a^{23} + \frac{16675}{1546533} a^{19} + \frac{39529}{1546533} a^{15} + \frac{101183}{1546533} a^{11} + \frac{661723}{1546533} a^{7} + \frac{37168}{171837} a^{3}$, $\frac{1}{681679269207} a^{28} + \frac{158603}{681679269207} a^{24} + \frac{22259680}{681679269207} a^{20} + \frac{36253861327}{681679269207} a^{16} + \frac{16352504330}{681679269207} a^{12} - \frac{311840999840}{681679269207} a^{8} - \frac{2737898736}{8415793447} a^{4} - \frac{624101028}{8415793447}$, $\frac{1}{2045037807621} a^{29} + \frac{66598}{227226423069} a^{25} - \frac{1248836}{227226423069} a^{21} + \frac{714817232}{33525209961} a^{17} - \frac{4662898178}{227226423069} a^{13} + \frac{20801243095}{227226423069} a^{9} - \frac{384549041537}{2045037807621} a^{5} - \frac{848044784}{8415793447} a$, $\frac{1}{6135113422863} a^{30} + \frac{66598}{681679269207} a^{26} + \frac{134217319}{2045037807621} a^{22} - \frac{147200121589}{6135113422863} a^{18} + \frac{12030724889}{681679269207} a^{14} + \frac{247137293638}{2045037807621} a^{10} - \frac{2134896114686}{6135113422863} a^{6} + \frac{3112382555}{75742141023} a^{2}$, $\frac{1}{18405340268589} a^{31} - \frac{124727}{681679269207} a^{27} - \frac{179176550}{6135113422863} a^{23} - \frac{322617380998}{18405340268589} a^{19} - \frac{55473697403}{2045037807621} a^{15} + \frac{922497114322}{6135113422863} a^{11} - \frac{4280672199641}{18405340268589} a^{7} - \frac{55487422379}{227226423069} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{4}\times C_{12}$, which has order $192$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{81714466}{2045037807621} a^{29} - \frac{27015025}{25247380341} a^{25} - \frac{3236399995}{227226423069} a^{21} - \frac{749370514412}{2045037807621} a^{17} - \frac{373207167370}{75742141023} a^{13} - \frac{685052406955}{227226423069} a^{9} + \frac{2203513790273}{2045037807621} a^{5} - \frac{2625860430}{8415793447} a \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4647831490592.4375 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{39}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-78}) \), \(\Q(\sqrt{78}) \), \(\Q(\zeta_{8})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(i, \sqrt{13})\), \(\Q(i, \sqrt{26})\), \(\Q(i, \sqrt{39})\), \(\Q(i, \sqrt{78})\), \(\Q(\sqrt{-2}, \sqrt{13})\), \(\Q(\sqrt{-2}, \sqrt{-13})\), \(\Q(\sqrt{-2}, \sqrt{39})\), \(\Q(\sqrt{-2}, \sqrt{-39})\), \(\Q(\sqrt{2}, \sqrt{13})\), \(\Q(\sqrt{2}, \sqrt{-13})\), \(\Q(\sqrt{2}, \sqrt{39})\), \(\Q(\sqrt{2}, \sqrt{-39})\), \(\Q(\sqrt{3}, \sqrt{13})\), \(\Q(\sqrt{3}, \sqrt{-13})\), \(\Q(\sqrt{3}, \sqrt{-26})\), \(\Q(\sqrt{3}, \sqrt{26})\), \(\Q(\sqrt{-3}, \sqrt{13})\), \(\Q(\sqrt{-3}, \sqrt{-13})\), \(\Q(\sqrt{-3}, \sqrt{-26})\), \(\Q(\sqrt{-3}, \sqrt{26})\), \(\Q(\sqrt{-6}, \sqrt{13})\), \(\Q(\sqrt{-6}, \sqrt{-13})\), \(\Q(\sqrt{-6}, \sqrt{-26})\), \(\Q(\sqrt{-6}, \sqrt{26})\), \(\Q(\sqrt{6}, \sqrt{13})\), \(\Q(\sqrt{6}, \sqrt{-13})\), \(\Q(\sqrt{6}, \sqrt{-26})\), \(\Q(\sqrt{6}, \sqrt{26})\), 4.4.1265472.2, 4.0.1265472.2, 4.0.316368.2, 4.4.19773.1, 4.4.140608.1, 4.0.140608.2, 4.0.2197.1, 4.4.35152.1, \(\Q(\zeta_{24})\), 8.0.1871773696.1, 8.0.151613669376.8, 8.0.592240896.1, 8.0.151613669376.9, 8.0.151613669376.3, 8.0.151613669376.2, 8.0.151613669376.4, 8.0.151613669376.1, 8.0.9475854336.1, 8.0.151613669376.7, 8.8.151613669376.1, 8.0.151613669376.5, 8.0.9475854336.2, 8.0.151613669376.6, 8.0.25622710124544.43, 8.0.100088711424.1, 8.0.316329754624.2, 8.0.1235663104.1, 8.0.25622710124544.24, 8.0.1601419382784.2, 8.0.19770609664.1, 8.0.316329754624.1, 8.8.1601419382784.1, 8.0.25622710124544.28, 8.8.316329754624.1, 8.0.19770609664.2, 8.8.25622710124544.6, 8.0.25622710124544.77, 8.0.100088711424.3, 8.8.100088711424.1, 8.0.1601419382784.5, 8.0.1601419382784.6, 8.0.100088711424.2, 8.0.390971529.1, 8.0.1601419382784.3, 8.0.25622710124544.49, 8.0.25622710124544.25, 8.0.1601419382784.1, 8.8.25622710124544.1, 8.0.1601419382784.4, 8.0.25622710124544.27, 8.8.1601419382784.2, 16.0.22986704741655040229376.1, 16.0.656523274126409603991207936.4, 16.0.100064513660480049381376.1, 16.0.656523274126409603991207936.9, 16.0.10017750154516748107776.1, 16.0.656523274126409603991207936.8, 16.0.656523274126409603991207936.3, 16.0.656523274126409603991207936.5, 16.0.656523274126409603991207936.6, 16.0.656523274126409603991207936.1, 16.0.2564544039556287515590656.2, 16.16.656523274126409603991207936.1, 16.0.656523274126409603991207936.7, 16.0.2564544039556287515590656.1, 16.0.656523274126409603991207936.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$