Normalized defining polynomial
\( x^{32} - 3 x^{24} + 117486 x^{16} + 35572 x^{8} + 6561 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{7}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{8}$, $\frac{1}{3} a^{17} - \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{19} + \frac{2}{27} a^{11} - \frac{8}{27} a^{3}$, $\frac{1}{27} a^{20} + \frac{2}{27} a^{12} - \frac{8}{27} a^{4}$, $\frac{1}{27} a^{21} + \frac{2}{27} a^{13} - \frac{8}{27} a^{5}$, $\frac{1}{27} a^{22} + \frac{2}{27} a^{14} - \frac{8}{27} a^{6}$, $\frac{1}{27} a^{23} + \frac{2}{27} a^{15} - \frac{8}{27} a^{7}$, $\frac{1}{24421218093} a^{24} - \frac{2831412994}{24421218093} a^{16} + \frac{12033653563}{24421218093} a^{8} + \frac{169209443}{904489559}$, $\frac{1}{24421218093} a^{25} - \frac{2831412994}{24421218093} a^{17} + \frac{3893247532}{24421218093} a^{9} - \frac{396861230}{2713468677} a$, $\frac{1}{24421218093} a^{26} - \frac{117944317}{24421218093} a^{18} + \frac{1179778855}{24421218093} a^{10} - \frac{2999562808}{8140406031} a^{2}$, $\frac{1}{24421218093} a^{27} - \frac{117944317}{24421218093} a^{19} + \frac{1179778855}{24421218093} a^{11} - \frac{2999562808}{8140406031} a^{3}$, $\frac{1}{73263654279} a^{28} - \frac{113603764}{8140406031} a^{20} - \frac{2923202098}{24421218093} a^{12} - \frac{9903177983}{73263654279} a^{4}$, $\frac{1}{219790962837} a^{29} + \frac{563678267}{73263654279} a^{21} - \frac{371407660}{24421218093} a^{13} - \frac{31610927399}{219790962837} a^{5}$, $\frac{1}{659372888511} a^{30} - \frac{2149790410}{219790962837} a^{22} + \frac{5960019253}{73263654279} a^{14} + \frac{326566937965}{659372888511} a^{6}$, $\frac{1}{1978118665533} a^{31} - \frac{2149790410}{659372888511} a^{23} - \frac{18461198840}{219790962837} a^{15} - \frac{552596913383}{1978118665533} a^{7}$
Class group and class number
$C_{5}\times C_{5}\times C_{15}$, which has order $375$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{327797006}{1978118665533} a^{31} - \frac{343926968}{659372888511} a^{23} + \frac{4279075670711}{219790962837} a^{15} + \frac{5965382536868}{1978118665533} a^{7} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6740125694616.533 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||