Properties

Label 32.0.426...625.1
Degree $32$
Signature $[0, 16]$
Discriminant $4.266\times 10^{49}$
Root discriminant \(35.56\)
Ramified primes $3,5,7,29$
Class number not computed
Class group not computed
Galois group $C_2^4:C_4$ (as 32T262)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 2*x^31 - 14*x^30 + 32*x^29 + 110*x^28 - 256*x^27 - 822*x^26 + 1761*x^25 + 5076*x^24 - 6234*x^23 - 33617*x^22 + 7049*x^21 + 145847*x^20 + 80587*x^19 - 200297*x^18 - 1040496*x^17 + 909785*x^16 - 126545*x^15 + 4807173*x^14 - 6468687*x^13 + 4092091*x^12 - 12326083*x^11 + 15573178*x^10 - 9966741*x^9 + 15430857*x^8 - 15762104*x^7 + 7858456*x^6 - 7358464*x^5 + 5444944*x^4 - 823424*x^3 + 88384*x^2 - 5760*x + 256)
 
gp: K = bnfinit(y^32 - 2*y^31 - 14*y^30 + 32*y^29 + 110*y^28 - 256*y^27 - 822*y^26 + 1761*y^25 + 5076*y^24 - 6234*y^23 - 33617*y^22 + 7049*y^21 + 145847*y^20 + 80587*y^19 - 200297*y^18 - 1040496*y^17 + 909785*y^16 - 126545*y^15 + 4807173*y^14 - 6468687*y^13 + 4092091*y^12 - 12326083*y^11 + 15573178*y^10 - 9966741*y^9 + 15430857*y^8 - 15762104*y^7 + 7858456*y^6 - 7358464*y^5 + 5444944*y^4 - 823424*y^3 + 88384*y^2 - 5760*y + 256, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 2*x^31 - 14*x^30 + 32*x^29 + 110*x^28 - 256*x^27 - 822*x^26 + 1761*x^25 + 5076*x^24 - 6234*x^23 - 33617*x^22 + 7049*x^21 + 145847*x^20 + 80587*x^19 - 200297*x^18 - 1040496*x^17 + 909785*x^16 - 126545*x^15 + 4807173*x^14 - 6468687*x^13 + 4092091*x^12 - 12326083*x^11 + 15573178*x^10 - 9966741*x^9 + 15430857*x^8 - 15762104*x^7 + 7858456*x^6 - 7358464*x^5 + 5444944*x^4 - 823424*x^3 + 88384*x^2 - 5760*x + 256);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 2*x^31 - 14*x^30 + 32*x^29 + 110*x^28 - 256*x^27 - 822*x^26 + 1761*x^25 + 5076*x^24 - 6234*x^23 - 33617*x^22 + 7049*x^21 + 145847*x^20 + 80587*x^19 - 200297*x^18 - 1040496*x^17 + 909785*x^16 - 126545*x^15 + 4807173*x^14 - 6468687*x^13 + 4092091*x^12 - 12326083*x^11 + 15573178*x^10 - 9966741*x^9 + 15430857*x^8 - 15762104*x^7 + 7858456*x^6 - 7358464*x^5 + 5444944*x^4 - 823424*x^3 + 88384*x^2 - 5760*x + 256)
 

\( x^{32} - 2 x^{31} - 14 x^{30} + 32 x^{29} + 110 x^{28} - 256 x^{27} - 822 x^{26} + 1761 x^{25} + \cdots + 256 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(42655280577413385127292283461599409580230712890625\) \(\medspace = 3^{16}\cdot 5^{24}\cdot 7^{16}\cdot 29^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(35.56\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{3/4}7^{1/2}29^{1/2}\approx 82.51561665216384$
Ramified primes:   \(3\), \(5\), \(7\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{16}-\frac{1}{2}a$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{4}$, $\frac{1}{10}a^{20}+\frac{1}{5}a^{19}+\frac{1}{10}a^{17}+\frac{1}{5}a^{16}-\frac{1}{5}a^{15}+\frac{2}{5}a^{14}-\frac{2}{5}a^{13}-\frac{1}{5}a^{12}-\frac{2}{5}a^{11}+\frac{2}{5}a^{10}+\frac{1}{5}a^{9}+\frac{2}{5}a^{8}-\frac{2}{5}a^{7}-\frac{1}{5}a^{6}-\frac{3}{10}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{2}a^{2}-\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{10}a^{21}+\frac{1}{10}a^{19}+\frac{1}{10}a^{18}-\frac{1}{10}a^{16}-\frac{1}{5}a^{15}-\frac{1}{5}a^{14}-\frac{2}{5}a^{13}+\frac{1}{5}a^{11}+\frac{2}{5}a^{10}-\frac{1}{5}a^{8}-\frac{2}{5}a^{7}+\frac{1}{10}a^{6}+\frac{1}{5}a^{5}-\frac{1}{2}a^{4}+\frac{1}{10}a^{3}-\frac{1}{5}a^{2}-\frac{1}{2}a-\frac{1}{5}$, $\frac{1}{20}a^{22}-\frac{1}{20}a^{20}+\frac{1}{10}a^{19}+\frac{1}{10}a^{17}-\frac{1}{20}a^{16}-\frac{3}{20}a^{15}-\frac{7}{20}a^{14}-\frac{7}{20}a^{13}+\frac{1}{20}a^{12}-\frac{3}{20}a^{11}+\frac{7}{20}a^{10}-\frac{1}{20}a^{9}-\frac{7}{20}a^{8}-\frac{3}{10}a^{7}+\frac{1}{20}a^{6}+\frac{3}{10}a^{5}-\frac{1}{20}a^{4}+\frac{9}{20}a^{3}+\frac{1}{4}a^{2}-\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{20}a^{23}-\frac{1}{20}a^{21}-\frac{1}{5}a^{19}+\frac{1}{10}a^{18}-\frac{3}{20}a^{17}+\frac{3}{20}a^{16}-\frac{3}{20}a^{15}+\frac{1}{4}a^{14}+\frac{9}{20}a^{13}+\frac{1}{20}a^{12}-\frac{1}{4}a^{11}-\frac{9}{20}a^{10}+\frac{9}{20}a^{9}+\frac{3}{10}a^{8}+\frac{9}{20}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{3}{20}a^{4}+\frac{1}{20}a^{3}+\frac{1}{10}a^{2}+\frac{1}{10}a+\frac{2}{5}$, $\frac{1}{20}a^{24}-\frac{1}{20}a^{20}+\frac{1}{10}a^{19}-\frac{3}{20}a^{18}-\frac{1}{20}a^{17}+\frac{1}{5}a^{16}+\frac{1}{5}a^{15}+\frac{2}{5}a^{14}+\frac{2}{5}a^{13}-\frac{1}{10}a^{12}+\frac{1}{10}a^{11}+\frac{1}{10}a^{10}+\frac{3}{20}a^{9}+\frac{2}{5}a^{8}-\frac{1}{10}a^{7}+\frac{2}{5}a^{6}+\frac{1}{20}a^{5}+\frac{1}{5}a^{4}+\frac{9}{20}a^{3}+\frac{7}{20}a^{2}+\frac{1}{10}a-\frac{2}{5}$, $\frac{1}{40}a^{25}-\frac{1}{40}a^{24}-\frac{1}{40}a^{22}-\frac{1}{40}a^{21}+\frac{1}{8}a^{19}-\frac{1}{5}a^{18}-\frac{1}{40}a^{17}+\frac{3}{40}a^{16}-\frac{1}{8}a^{15}+\frac{11}{40}a^{14}-\frac{7}{40}a^{13}+\frac{11}{40}a^{12}+\frac{19}{40}a^{11}-\frac{1}{20}a^{10}-\frac{1}{20}a^{9}+\frac{1}{40}a^{8}+\frac{3}{10}a^{7}-\frac{11}{40}a^{5}+\frac{1}{20}a^{4}-\frac{9}{40}a^{3}-\frac{1}{4}a^{2}-\frac{1}{10}a+\frac{2}{5}$, $\frac{1}{440}a^{26}+\frac{1}{220}a^{25}-\frac{3}{440}a^{24}-\frac{3}{440}a^{23}-\frac{1}{44}a^{22}-\frac{21}{440}a^{21}-\frac{21}{440}a^{20}-\frac{1}{440}a^{19}+\frac{31}{440}a^{18}+\frac{1}{220}a^{17}-\frac{2}{11}a^{16}+\frac{1}{10}a^{15}+\frac{9}{44}a^{14}-\frac{109}{220}a^{13}-\frac{23}{110}a^{12}+\frac{131}{440}a^{11}-\frac{4}{11}a^{10}-\frac{41}{440}a^{9}-\frac{163}{440}a^{8}+\frac{71}{220}a^{7}-\frac{153}{440}a^{6}-\frac{21}{440}a^{5}-\frac{163}{440}a^{4}-\frac{137}{440}a^{3}-\frac{47}{110}a^{2}+\frac{13}{110}a+\frac{14}{55}$, $\frac{1}{440}a^{27}+\frac{1}{110}a^{25}-\frac{1}{55}a^{24}-\frac{1}{110}a^{23}+\frac{1}{44}a^{22}+\frac{1}{44}a^{21}+\frac{19}{440}a^{20}-\frac{1}{5}a^{19}+\frac{9}{55}a^{18}-\frac{51}{440}a^{17}-\frac{1}{88}a^{16}+\frac{101}{440}a^{15}-\frac{211}{440}a^{14}-\frac{107}{440}a^{13}-\frac{101}{220}a^{12}-\frac{59}{440}a^{11}+\frac{191}{440}a^{10}+\frac{19}{88}a^{9}+\frac{21}{88}a^{8}-\frac{217}{440}a^{7}+\frac{87}{440}a^{6}+\frac{1}{4}a^{5}+\frac{189}{440}a^{4}+\frac{37}{88}a^{3}+\frac{26}{55}a^{2}-\frac{53}{110}a+\frac{16}{55}$, $\frac{1}{880}a^{28}+\frac{3}{440}a^{25}-\frac{7}{440}a^{24}-\frac{1}{40}a^{23}-\frac{1}{55}a^{22}-\frac{7}{880}a^{21}-\frac{1}{220}a^{20}-\frac{83}{440}a^{19}+\frac{89}{880}a^{18}+\frac{37}{176}a^{17}-\frac{217}{880}a^{16}+\frac{119}{880}a^{15}+\frac{391}{880}a^{14}-\frac{47}{220}a^{13}-\frac{329}{880}a^{12}-\frac{91}{880}a^{11}+\frac{15}{176}a^{10}+\frac{45}{176}a^{9}+\frac{149}{880}a^{8}-\frac{17}{176}a^{7}+\frac{97}{440}a^{6}+\frac{59}{176}a^{5}-\frac{87}{880}a^{4}-\frac{161}{440}a^{3}-\frac{41}{220}a^{2}+\frac{23}{110}a+\frac{1}{11}$, $\frac{1}{1760}a^{29}-\frac{1}{880}a^{27}+\frac{1}{176}a^{25}+\frac{3}{440}a^{24}-\frac{17}{880}a^{23}+\frac{3}{160}a^{22}+\frac{7}{880}a^{21}-\frac{39}{880}a^{20}+\frac{51}{1760}a^{19}-\frac{73}{352}a^{18}+\frac{93}{1760}a^{17}-\frac{63}{352}a^{16}-\frac{119}{1760}a^{15}-\frac{35}{176}a^{14}-\frac{347}{1760}a^{13}-\frac{135}{352}a^{12}+\frac{771}{1760}a^{11}-\frac{23}{160}a^{10}+\frac{173}{352}a^{9}-\frac{145}{352}a^{8}-\frac{111}{440}a^{7}+\frac{731}{1760}a^{6}-\frac{137}{1760}a^{5}-\frac{81}{880}a^{4}+\frac{9}{55}a^{3}-\frac{31}{220}a^{2}+\frac{23}{110}a+\frac{4}{55}$, $\frac{1}{78\!\cdots\!80}a^{30}-\frac{273647326495943}{96\!\cdots\!40}a^{29}+\frac{20\!\cdots\!47}{35\!\cdots\!40}a^{28}-\frac{76\!\cdots\!67}{98\!\cdots\!60}a^{27}-\frac{18\!\cdots\!09}{39\!\cdots\!40}a^{26}-\frac{10\!\cdots\!61}{98\!\cdots\!60}a^{25}+\frac{78\!\cdots\!25}{78\!\cdots\!08}a^{24}+\frac{22\!\cdots\!41}{15\!\cdots\!16}a^{23}+\frac{22\!\cdots\!97}{98\!\cdots\!60}a^{22}+\frac{12\!\cdots\!87}{39\!\cdots\!40}a^{21}-\frac{14\!\cdots\!29}{78\!\cdots\!80}a^{20}-\frac{16\!\cdots\!97}{17\!\cdots\!80}a^{19}+\frac{15\!\cdots\!59}{78\!\cdots\!80}a^{18}-\frac{21\!\cdots\!61}{78\!\cdots\!80}a^{17}-\frac{16\!\cdots\!97}{78\!\cdots\!80}a^{16}+\frac{17\!\cdots\!03}{19\!\cdots\!20}a^{15}+\frac{14\!\cdots\!21}{78\!\cdots\!80}a^{14}+\frac{31\!\cdots\!67}{15\!\cdots\!16}a^{13}+\frac{17\!\cdots\!21}{78\!\cdots\!80}a^{12}+\frac{17\!\cdots\!59}{14\!\cdots\!56}a^{11}-\frac{58\!\cdots\!49}{19\!\cdots\!80}a^{10}-\frac{30\!\cdots\!07}{78\!\cdots\!80}a^{9}-\frac{48\!\cdots\!29}{39\!\cdots\!40}a^{8}-\frac{16\!\cdots\!73}{78\!\cdots\!80}a^{7}-\frac{18\!\cdots\!59}{78\!\cdots\!80}a^{6}+\frac{88\!\cdots\!51}{19\!\cdots\!20}a^{5}+\frac{36\!\cdots\!09}{98\!\cdots\!60}a^{4}-\frac{11\!\cdots\!29}{24\!\cdots\!90}a^{3}-\frac{19\!\cdots\!79}{49\!\cdots\!80}a^{2}-\frac{42\!\cdots\!94}{12\!\cdots\!95}a+\frac{52\!\cdots\!42}{12\!\cdots\!95}$, $\frac{1}{28\!\cdots\!40}a^{31}-\frac{20\!\cdots\!61}{72\!\cdots\!60}a^{30}+\frac{30\!\cdots\!61}{13\!\cdots\!20}a^{29}-\frac{17\!\cdots\!51}{72\!\cdots\!60}a^{28}+\frac{13\!\cdots\!83}{14\!\cdots\!20}a^{27}-\frac{49\!\cdots\!67}{72\!\cdots\!60}a^{26}-\frac{14\!\cdots\!09}{13\!\cdots\!20}a^{25}+\frac{59\!\cdots\!09}{28\!\cdots\!40}a^{24}-\frac{20\!\cdots\!51}{28\!\cdots\!24}a^{23}+\frac{60\!\cdots\!27}{14\!\cdots\!20}a^{22}+\frac{10\!\cdots\!43}{57\!\cdots\!48}a^{21}+\frac{98\!\cdots\!79}{28\!\cdots\!40}a^{20}+\frac{36\!\cdots\!13}{28\!\cdots\!40}a^{19}-\frac{24\!\cdots\!15}{14\!\cdots\!28}a^{18}-\frac{12\!\cdots\!31}{70\!\cdots\!40}a^{17}-\frac{17\!\cdots\!99}{14\!\cdots\!20}a^{16}+\frac{10\!\cdots\!89}{28\!\cdots\!40}a^{15}+\frac{22\!\cdots\!53}{57\!\cdots\!48}a^{14}-\frac{60\!\cdots\!01}{28\!\cdots\!40}a^{13}-\frac{36\!\cdots\!41}{28\!\cdots\!40}a^{12}+\frac{10\!\cdots\!49}{28\!\cdots\!40}a^{11}-\frac{83\!\cdots\!61}{28\!\cdots\!40}a^{10}-\frac{11\!\cdots\!03}{36\!\cdots\!80}a^{9}-\frac{12\!\cdots\!97}{28\!\cdots\!40}a^{8}-\frac{13\!\cdots\!53}{28\!\cdots\!40}a^{7}+\frac{33\!\cdots\!19}{14\!\cdots\!20}a^{6}-\frac{30\!\cdots\!07}{90\!\cdots\!20}a^{5}+\frac{10\!\cdots\!49}{72\!\cdots\!56}a^{4}-\frac{41\!\cdots\!89}{90\!\cdots\!20}a^{3}-\frac{46\!\cdots\!69}{90\!\cdots\!20}a^{2}+\frac{37\!\cdots\!53}{22\!\cdots\!55}a-\frac{90\!\cdots\!38}{22\!\cdots\!55}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{720893405312274704384024174360685296659707118301748692365836756778748803403}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{31} - \frac{596956557805948854765838033802918985478218753799444563787170535496758268653}{3517752890681557503834594764050856793884327685585293411631654839052053791088320} a^{30} - \frac{479777494337456926140951821115732645969997403064569164714690200752224402581}{319795717334687045803144978550077890353120698689572128330150439913823071917120} a^{29} + \frac{305150277902964982080450321436218825486080763764749327742502795180861052357}{109929777833798671994831086376589274808885240174540419113489213720376680971510} a^{28} + \frac{43385588945075487318662641549257719771732045915112142673300468661568652973001}{3517752890681557503834594764050856793884327685585293411631654839052053791088320} a^{27} - \frac{19524629652676093189439017191830204283900404707391320893013975636023288967357}{879438222670389375958648691012714198471081921396323352907913709763013447772080} a^{26} - \frac{65246452705993631676282428431600423903200728090584543857598436082288534426313}{703550578136311500766918952810171358776865537117058682326330967810410758217664} a^{25} + \frac{1057139610785117946265267629172011015936283835299492623258945253428503014210483}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{24} + \frac{50864052877728424274788011946392042436278705133253989834288543491402135351539}{87943822267038937595864869101271419847108192139632335290791370976301344777208} a^{23} - \frac{1588430148432129872380769971762083610120436105276001596479569457892433194012949}{3517752890681557503834594764050856793884327685585293411631654839052053791088320} a^{22} - \frac{25615415967767905633175080349919486927733946751837126482121395904752933010247107}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{21} - \frac{314522513511228076262093155603260373462475004380845358419675455367518728886851}{639591434669374091606289957100155780706241397379144256660300879827646143834240} a^{20} + \frac{105788061077183621515698657400877550192121863710169569808035404523677414585759173}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{19} + \frac{94497221338830408499709142479297854904052311270567200971282970091036122034311649}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{18} - \frac{119638420733514272990780685304610939167120321777014247366540493557393139051714163}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{17} - \frac{12454516549102420493126370701976242816154395605859983065069364169058296729982577}{109929777833798671994831086376589274808885240174540419113489213720376680971510} a^{16} + \frac{391591350375108354020000744113171819761768878137808464379681261148673707522516559}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{15} + \frac{19858911698605301473625583309729039502770814761642971884844387402279711111161965}{1407101156272623001533837905620342717553731074234117364652661935620821516435328} a^{14} + \frac{3464285953602823352464692217845569091951062010793820128039052909172814724256622223}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{13} - \frac{3478847387988679038819046464148892171584385035618038410001312558998836606079581837}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{12} + \frac{1514986832121584754699326432454806256899966699572218127257995052463790606989706697}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{11} - \frac{1618229660153217740034487933706175522895336443355222345676590555665802954492587573}{1407101156272623001533837905620342717553731074234117364652661935620821516435328} a^{10} + \frac{4160484814643741413561690604518680499742073474136097236885459683823111637378269411}{3517752890681557503834594764050856793884327685585293411631654839052053791088320} a^{9} - \frac{3770202377147965049975509288459902997888459012679425031916245422253191925650469003}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{8} + \frac{9188616291050342071131025261612071937268100375632243546483498479230230698864414847}{7035505781363115007669189528101713587768655371170586823263309678104107582176640} a^{7} - \frac{246576089343840664193652258959629536810002565021862986515535103086230369833052803}{219859555667597343989662172753178549617770480349080838226978427440753361943020} a^{6} + \frac{580191987481316088170877496167722494917407277619169600183393129350419750496597883}{1758876445340778751917297382025428396942163842792646705815827419526026895544160} a^{5} - \frac{243457380637994224799065036560752278636221878898445284265584889120018070569974627}{439719111335194687979324345506357099235540960698161676453956854881506723886040} a^{4} + \frac{147988898343866193410477705552382166395709041241326553875929475261891313868573703}{439719111335194687979324345506357099235540960698161676453956854881506723886040} a^{3} + \frac{696277462201536578645228476898001704747474893039124675576575551495364075758351}{9993616166708970181348280579689934073535021834049129010317201247306970997410} a^{2} + \frac{581495348273575027564300947129498206945572193231756198136694240971551868263301}{109929777833798671994831086376589274808885240174540419113489213720376680971510} a - \frac{18798842408387479295842271097217523103224547946640320697506112845384717720273}{54964888916899335997415543188294637404442620087270209556744606860188340485755} \)  (order $30$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 2*x^31 - 14*x^30 + 32*x^29 + 110*x^28 - 256*x^27 - 822*x^26 + 1761*x^25 + 5076*x^24 - 6234*x^23 - 33617*x^22 + 7049*x^21 + 145847*x^20 + 80587*x^19 - 200297*x^18 - 1040496*x^17 + 909785*x^16 - 126545*x^15 + 4807173*x^14 - 6468687*x^13 + 4092091*x^12 - 12326083*x^11 + 15573178*x^10 - 9966741*x^9 + 15430857*x^8 - 15762104*x^7 + 7858456*x^6 - 7358464*x^5 + 5444944*x^4 - 823424*x^3 + 88384*x^2 - 5760*x + 256)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 2*x^31 - 14*x^30 + 32*x^29 + 110*x^28 - 256*x^27 - 822*x^26 + 1761*x^25 + 5076*x^24 - 6234*x^23 - 33617*x^22 + 7049*x^21 + 145847*x^20 + 80587*x^19 - 200297*x^18 - 1040496*x^17 + 909785*x^16 - 126545*x^15 + 4807173*x^14 - 6468687*x^13 + 4092091*x^12 - 12326083*x^11 + 15573178*x^10 - 9966741*x^9 + 15430857*x^8 - 15762104*x^7 + 7858456*x^6 - 7358464*x^5 + 5444944*x^4 - 823424*x^3 + 88384*x^2 - 5760*x + 256, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 2*x^31 - 14*x^30 + 32*x^29 + 110*x^28 - 256*x^27 - 822*x^26 + 1761*x^25 + 5076*x^24 - 6234*x^23 - 33617*x^22 + 7049*x^21 + 145847*x^20 + 80587*x^19 - 200297*x^18 - 1040496*x^17 + 909785*x^16 - 126545*x^15 + 4807173*x^14 - 6468687*x^13 + 4092091*x^12 - 12326083*x^11 + 15573178*x^10 - 9966741*x^9 + 15430857*x^8 - 15762104*x^7 + 7858456*x^6 - 7358464*x^5 + 5444944*x^4 - 823424*x^3 + 88384*x^2 - 5760*x + 256);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 2*x^31 - 14*x^30 + 32*x^29 + 110*x^28 - 256*x^27 - 822*x^26 + 1761*x^25 + 5076*x^24 - 6234*x^23 - 33617*x^22 + 7049*x^21 + 145847*x^20 + 80587*x^19 - 200297*x^18 - 1040496*x^17 + 909785*x^16 - 126545*x^15 + 4807173*x^14 - 6468687*x^13 + 4092091*x^12 - 12326083*x^11 + 15573178*x^10 - 9966741*x^9 + 15430857*x^8 - 15762104*x^7 + 7858456*x^6 - 7358464*x^5 + 5444944*x^4 - 823424*x^3 + 88384*x^2 - 5760*x + 256);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^4:C_4$ (as 32T262):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 64
The 40 conjugacy class representatives for $C_2^4:C_4$
Character table for $C_2^4:C_4$

Intermediate fields

\(\Q(\sqrt{105}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-15}) \), \(\Q(\zeta_{5})\), 4.4.32625.1, 4.0.1598625.1, 4.4.6125.1, 4.4.177625.1, 4.0.55125.1, \(\Q(\zeta_{15})^+\), 4.0.3625.1, \(\Q(\sqrt{-15}, \sqrt{21})\), 4.0.35525.3, \(\Q(\sqrt{-3}, \sqrt{-35})\), \(\Q(\sqrt{5}, \sqrt{-7})\), 4.4.319725.1, \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), 4.0.6525.1, \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-7}, \sqrt{-15})\), 4.4.725.1, 8.0.102224075625.7, 8.0.102224075625.13, 8.0.102224075625.3, 8.0.1262025625.3, 8.0.121550625.1, 8.8.102224075625.1, 8.0.42575625.1, 8.0.31550640625.3, 8.0.2555601890625.18, 8.0.2555601890625.12, 8.0.31550640625.6, 8.0.2555601890625.11, 8.0.37515625.1, 8.0.3038765625.2, 8.0.31550640625.5, 8.0.2555601890625.15, 8.8.2555601890625.1, 8.8.2555601890625.2, 8.0.2555601890625.10, 8.0.3038765625.3, 8.8.2555601890625.3, 8.8.3038765625.1, 8.0.2555601890625.6, 8.0.1064390625.3, 8.0.2555601890625.7, 8.0.2555601890625.5, 8.0.1064390625.1, \(\Q(\zeta_{15})\), 8.0.2555601890625.14, 8.0.3038765625.1, 8.0.1064390625.2, 8.8.1064390625.1, 8.0.2555601890625.13, 8.8.31550640625.1, 8.0.13140625.1, 16.0.10449761637385719140625.2, 16.0.6531101023366074462890625.8, 16.0.6531101023366074462890625.4, 16.0.6531101023366074462890625.6, 16.0.6531101023366074462890625.1, 16.0.6531101023366074462890625.10, 16.0.6531101023366074462890625.7, 16.0.6531101023366074462890625.5, 16.0.995442923847900390625.3, 16.0.9234096523681640625.1, 16.0.6531101023366074462890625.3, 16.16.6531101023366074462890625.1, 16.0.6531101023366074462890625.9, 16.0.1132927402587890625.1, 16.0.6531101023366074462890625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{8}$ R R R ${\href{/padicField/11.2.0.1}{2} }^{16}$ ${\href{/padicField/13.4.0.1}{4} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.2.0.1}{2} }^{16}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ R ${\href{/padicField/31.2.0.1}{2} }^{16}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{16}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
\(7\) Copy content Toggle raw display 7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(29\) Copy content Toggle raw display 29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$