Normalized defining polynomial
\( x^{32} - 56 x^{30} + 2156 x^{28} - 71344 x^{26} + 2184910 x^{24} - 47059600 x^{22} + 875308560 x^{20} - 14547063552 x^{18} + 204604317092 x^{16} - 1779432654272 x^{14} + 14110203638048 x^{12} - 99340895568320 x^{10} + 518107062507832 x^{8} - 551879803278272 x^{6} + 585984734941536 x^{4} - 607687873272704 x^{2} + 531726889113616 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{4802} a^{8}$, $\frac{1}{4802} a^{9}$, $\frac{1}{33614} a^{10}$, $\frac{1}{33614} a^{11}$, $\frac{1}{235298} a^{12}$, $\frac{1}{235298} a^{13}$, $\frac{1}{1647086} a^{14}$, $\frac{1}{1647086} a^{15}$, $\frac{1}{23059204} a^{16}$, $\frac{1}{23059204} a^{17}$, $\frac{1}{5003847268} a^{18} + \frac{15}{714835324} a^{16} + \frac{2}{25529833} a^{14} - \frac{1}{3647119} a^{12} + \frac{1}{1042034} a^{10} - \frac{13}{148862} a^{8} + \frac{11}{10633} a^{6} + \frac{10}{1519} a^{4} - \frac{5}{217} a^{2} - \frac{13}{31}$, $\frac{1}{5003847268} a^{19} + \frac{15}{714835324} a^{17} + \frac{2}{25529833} a^{15} - \frac{1}{3647119} a^{13} + \frac{1}{1042034} a^{11} - \frac{13}{148862} a^{9} + \frac{11}{10633} a^{7} + \frac{10}{1519} a^{5} - \frac{5}{217} a^{3} - \frac{13}{31} a$, $\frac{1}{35026930876} a^{20} + \frac{3}{1042034} a^{10} + \frac{9}{31}$, $\frac{1}{35026930876} a^{21} + \frac{3}{1042034} a^{11} + \frac{9}{31} a$, $\frac{1}{245188516132} a^{22} + \frac{3}{7294238} a^{12} + \frac{9}{217} a^{2}$, $\frac{1}{245188516132} a^{23} + \frac{3}{7294238} a^{13} + \frac{9}{217} a^{3}$, $\frac{1}{3432639225848} a^{24} - \frac{1}{3647119} a^{14} - \frac{11}{1519} a^{4}$, $\frac{1}{3432639225848} a^{25} - \frac{1}{3647119} a^{15} - \frac{11}{1519} a^{5}$, $\frac{1}{9917776911755914936} a^{26} + \frac{3173}{22852020533999804} a^{24} + \frac{85069}{101201805221999132} a^{22} - \frac{85657}{7228700372999938} a^{20} + \frac{79539}{1032671481857134} a^{18} + \frac{411907}{295048994816324} a^{16} - \frac{1671}{61442939362} a^{14} - \frac{31366}{1505352014369} a^{12} + \frac{3144819}{430100575534} a^{10} + \frac{3841175}{61442939362} a^{8} - \frac{5143468}{4388781383} a^{6} + \frac{3127171}{626968769} a^{4} - \frac{1006672}{89566967} a^{2} - \frac{4928301}{12795281}$, $\frac{1}{9917776911755914936} a^{27} + \frac{3173}{22852020533999804} a^{25} + \frac{85069}{101201805221999132} a^{23} - \frac{85657}{7228700372999938} a^{21} + \frac{79539}{1032671481857134} a^{19} + \frac{411907}{295048994816324} a^{17} - \frac{1671}{61442939362} a^{15} - \frac{31366}{1505352014369} a^{13} + \frac{3144819}{430100575534} a^{11} + \frac{3841175}{61442939362} a^{9} - \frac{5143468}{4388781383} a^{7} + \frac{3127171}{626968769} a^{5} - \frac{1006672}{89566967} a^{3} - \frac{4928301}{12795281} a$, $\frac{1}{2152157589851033541112} a^{28} + \frac{15}{307451084264433363016} a^{26} - \frac{1353545}{43921583466347623288} a^{24} - \frac{295935}{224089711562998078} a^{22} - \frac{4501075}{448179423125996156} a^{20} + \frac{1974767}{64025631875142308} a^{18} + \frac{44767237}{9146518839306044} a^{16} - \frac{122974903}{653322774236146} a^{14} + \frac{11094585}{46665912445439} a^{12} + \frac{181713821}{13333117841554} a^{10} - \frac{35684806}{952365560111} a^{8} + \frac{174213533}{136052222873} a^{6} - \frac{90689607}{19436031839} a^{4} + \frac{125886043}{2776575977} a^{2} + \frac{9949030}{396653711}$, $\frac{1}{2152157589851033541112} a^{29} + \frac{15}{307451084264433363016} a^{27} - \frac{1353545}{43921583466347623288} a^{25} - \frac{295935}{224089711562998078} a^{23} - \frac{4501075}{448179423125996156} a^{21} + \frac{1974767}{64025631875142308} a^{19} + \frac{44767237}{9146518839306044} a^{17} - \frac{122974903}{653322774236146} a^{15} + \frac{11094585}{46665912445439} a^{13} + \frac{181713821}{13333117841554} a^{11} - \frac{35684806}{952365560111} a^{9} + \frac{174213533}{136052222873} a^{7} - \frac{90689607}{19436031839} a^{5} + \frac{125886043}{2776575977} a^{3} + \frac{9949030}{396653711} a$, $\frac{1}{15065103128957234787784} a^{30} + \frac{57208}{112044855781499039} a^{20} - \frac{54751068}{6666558920777} a^{10} - \frac{130294233}{396653711}$, $\frac{1}{15065103128957234787784} a^{31} + \frac{57208}{112044855781499039} a^{21} - \frac{54751068}{6666558920777} a^{11} - \frac{130294233}{396653711} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{93249}{3766275782239308696946} a^{30} - \frac{1025739}{1076078794925516770556} a^{28} + \frac{1212237}{38431385533054170377} a^{26} - \frac{6061185}{6274511923763946184} a^{24} + \frac{22194523}{784313990470493273} a^{22} - \frac{1398735}{3614350186499969} a^{20} + \frac{102946896}{16006407968785577} a^{18} - \frac{827398377}{9146518839306044} a^{16} + \frac{256994244}{326661387118073} a^{14} + \frac{521935826}{46665912445439} a^{12} + \frac{292801860}{6666558920777} a^{10} - \frac{436312071}{1904731120222} a^{8} + \frac{33196644}{136052222873} a^{6} - \frac{5035446}{19436031839} a^{4} + \frac{2606246504}{2776575977} a^{2} - \frac{93249}{396653711} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |