Normalized defining polynomial
\( x^{32} + 96 x^{30} + 3696 x^{28} + 75184 x^{26} + 899720 x^{24} + 6660000 x^{22} + 31193320 x^{20} + 93050912 x^{18} + 175529272 x^{16} + 205236512 x^{14} + 144210848 x^{12} + 58587840 x^{10} + 13396712 x^{8} + 1684032 x^{6} + 108576 x^{4} + 2944 x^{2} + 16 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{4} a^{17}$, $\frac{1}{4} a^{18}$, $\frac{1}{4} a^{19}$, $\frac{1}{4} a^{20}$, $\frac{1}{4} a^{21}$, $\frac{1}{4} a^{22}$, $\frac{1}{4} a^{23}$, $\frac{1}{152} a^{24} - \frac{7}{76} a^{22} + \frac{3}{76} a^{20} + \frac{1}{76} a^{18} + \frac{1}{19} a^{16} - \frac{5}{38} a^{14} - \frac{1}{38} a^{12} + \frac{1}{19} a^{10} - \frac{4}{19} a^{8} - \frac{7}{19} a^{6} - \frac{8}{19} a^{4} + \frac{8}{19} a^{2} - \frac{3}{19}$, $\frac{1}{152} a^{25} - \frac{7}{76} a^{23} + \frac{3}{76} a^{21} + \frac{1}{76} a^{19} + \frac{1}{19} a^{17} - \frac{5}{38} a^{15} - \frac{1}{38} a^{13} + \frac{1}{19} a^{11} - \frac{4}{19} a^{9} - \frac{7}{19} a^{7} - \frac{8}{19} a^{5} + \frac{8}{19} a^{3} - \frac{3}{19} a$, $\frac{1}{152} a^{26} + \frac{5}{76} a^{20} - \frac{1}{76} a^{18} + \frac{2}{19} a^{16} + \frac{5}{38} a^{14} + \frac{7}{38} a^{12} + \frac{1}{38} a^{10} + \frac{7}{38} a^{8} + \frac{8}{19} a^{6} - \frac{9}{19} a^{4} - \frac{5}{19} a^{2} - \frac{4}{19}$, $\frac{1}{152} a^{27} + \frac{5}{76} a^{21} - \frac{1}{76} a^{19} + \frac{2}{19} a^{17} + \frac{5}{38} a^{15} + \frac{7}{38} a^{13} + \frac{1}{38} a^{11} + \frac{7}{38} a^{9} + \frac{8}{19} a^{7} - \frac{9}{19} a^{5} - \frac{5}{19} a^{3} - \frac{4}{19} a$, $\frac{1}{1064} a^{28} - \frac{3}{1064} a^{26} + \frac{1}{1064} a^{24} + \frac{9}{133} a^{22} - \frac{8}{133} a^{20} - \frac{45}{532} a^{18} - \frac{29}{532} a^{16} + \frac{3}{133} a^{14} + \frac{55}{266} a^{12} + \frac{3}{133} a^{10} + \frac{3}{133} a^{8} + \frac{36}{133} a^{6} + \frac{2}{19} a^{4} + \frac{1}{7} a^{2} - \frac{48}{133}$, $\frac{1}{1064} a^{29} - \frac{3}{1064} a^{27} + \frac{1}{1064} a^{25} + \frac{9}{133} a^{23} - \frac{8}{133} a^{21} - \frac{45}{532} a^{19} - \frac{29}{532} a^{17} + \frac{3}{133} a^{15} + \frac{55}{266} a^{13} + \frac{3}{133} a^{11} + \frac{3}{133} a^{9} + \frac{36}{133} a^{7} + \frac{2}{19} a^{5} + \frac{1}{7} a^{3} - \frac{48}{133} a$, $\frac{1}{796200721358242640706900334940680364504} a^{30} - \frac{262234743796482075417812578072840865}{796200721358242640706900334940680364504} a^{28} + \frac{2300443659195794722563731163487105489}{796200721358242640706900334940680364504} a^{26} + \frac{377186939415773454002740807199491151}{398100360679121320353450167470340182252} a^{24} - \frac{11861322613122273633881612977562726579}{199050180339560660176725083735170091126} a^{22} - \frac{33349248910197627991135178527095197335}{398100360679121320353450167470340182252} a^{20} + \frac{1734758833926166602191072024209462373}{14217870024254332869766077409655006509} a^{18} - \frac{21110360239552040196139728673899329577}{398100360679121320353450167470340182252} a^{16} + \frac{14227650723586514509941324843518204253}{199050180339560660176725083735170091126} a^{14} + \frac{27826911702119284769707948908242736}{5238162640514754215176975887767633977} a^{12} + \frac{1031817689368216615917281697832110760}{5238162640514754215176975887767633977} a^{10} - \frac{2081696693760338371068761979978418113}{28435740048508665739532154819310013018} a^{8} - \frac{41227459770888533880652689028252642201}{99525090169780330088362541867585045563} a^{6} - \frac{20313724406195299986176282261049087849}{99525090169780330088362541867585045563} a^{4} - \frac{24605341680269188269021627328339823842}{99525090169780330088362541867585045563} a^{2} - \frac{42891769580875068954655880460909518106}{99525090169780330088362541867585045563}$, $\frac{1}{796200721358242640706900334940680364504} a^{31} - \frac{262234743796482075417812578072840865}{796200721358242640706900334940680364504} a^{29} + \frac{2300443659195794722563731163487105489}{796200721358242640706900334940680364504} a^{27} + \frac{377186939415773454002740807199491151}{398100360679121320353450167470340182252} a^{25} - \frac{11861322613122273633881612977562726579}{199050180339560660176725083735170091126} a^{23} - \frac{33349248910197627991135178527095197335}{398100360679121320353450167470340182252} a^{21} + \frac{1734758833926166602191072024209462373}{14217870024254332869766077409655006509} a^{19} - \frac{21110360239552040196139728673899329577}{398100360679121320353450167470340182252} a^{17} + \frac{14227650723586514509941324843518204253}{199050180339560660176725083735170091126} a^{15} + \frac{27826911702119284769707948908242736}{5238162640514754215176975887767633977} a^{13} + \frac{1031817689368216615917281697832110760}{5238162640514754215176975887767633977} a^{11} - \frac{2081696693760338371068761979978418113}{28435740048508665739532154819310013018} a^{9} - \frac{41227459770888533880652689028252642201}{99525090169780330088362541867585045563} a^{7} - \frac{20313724406195299986176282261049087849}{99525090169780330088362541867585045563} a^{5} - \frac{24605341680269188269021627328339823842}{99525090169780330088362541867585045563} a^{3} - \frac{42891769580875068954655880460909518106}{99525090169780330088362541867585045563} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |