Normalized defining polynomial
\( x^{32} - 45 x^{30} + 991 x^{28} - 13806 x^{26} + 134311 x^{24} - 955614 x^{22} + 5086474 x^{20} - 20412324 x^{18} + 61603217 x^{16} - 138056868 x^{14} + 224682160 x^{12} - 255944832 x^{10} + 193736448 x^{8} - 88639488 x^{6} + 22093824 x^{4} - 1769472 x^{2} + 65536 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4046674754963777806715657550724832045209369204607193972736=2^{32}\cdot 7^{16}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(476=2^{2}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{476}(1,·)$, $\chi_{476}(393,·)$, $\chi_{476}(13,·)$, $\chi_{476}(15,·)$, $\chi_{476}(407,·)$, $\chi_{476}(281,·)$, $\chi_{476}(155,·)$, $\chi_{476}(237,·)$, $\chi_{476}(293,·)$, $\chi_{476}(169,·)$, $\chi_{476}(43,·)$, $\chi_{476}(433,·)$, $\chi_{476}(307,·)$, $\chi_{476}(55,·)$, $\chi_{476}(321,·)$, $\chi_{476}(195,·)$, $\chi_{476}(69,·)$, $\chi_{476}(183,·)$, $\chi_{476}(239,·)$, $\chi_{476}(461,·)$, $\chi_{476}(463,·)$, $\chi_{476}(83,·)$, $\chi_{476}(475,·)$, $\chi_{476}(349,·)$, $\chi_{476}(223,·)$, $\chi_{476}(225,·)$, $\chi_{476}(421,·)$, $\chi_{476}(365,·)$, $\chi_{476}(111,·)$, $\chi_{476}(251,·)$, $\chi_{476}(253,·)$, $\chi_{476}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{17} + \frac{3}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{20} - \frac{1}{16} a^{18} + \frac{3}{16} a^{16} + \frac{3}{8} a^{14} - \frac{1}{16} a^{12} + \frac{3}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{4} a^{6} + \frac{1}{16} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{21} - \frac{1}{32} a^{19} + \frac{3}{32} a^{17} + \frac{3}{16} a^{15} - \frac{1}{32} a^{13} - \frac{5}{16} a^{11} + \frac{1}{16} a^{9} - \frac{3}{8} a^{7} + \frac{1}{32} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{64} a^{22} - \frac{1}{64} a^{20} + \frac{3}{64} a^{18} + \frac{3}{32} a^{16} + \frac{31}{64} a^{14} + \frac{11}{32} a^{12} + \frac{1}{32} a^{10} + \frac{5}{16} a^{8} - \frac{31}{64} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{23} - \frac{1}{128} a^{21} + \frac{3}{128} a^{19} + \frac{3}{64} a^{17} - \frac{33}{128} a^{15} + \frac{11}{64} a^{13} + \frac{1}{64} a^{11} - \frac{11}{32} a^{9} + \frac{33}{128} a^{7} - \frac{7}{16} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{256} a^{24} - \frac{1}{256} a^{22} + \frac{3}{256} a^{20} + \frac{3}{128} a^{18} - \frac{33}{256} a^{16} - \frac{53}{128} a^{14} + \frac{1}{128} a^{12} - \frac{11}{64} a^{10} + \frac{33}{256} a^{8} - \frac{7}{32} a^{6} + \frac{3}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{512} a^{25} - \frac{1}{512} a^{23} + \frac{3}{512} a^{21} + \frac{3}{256} a^{19} - \frac{33}{512} a^{17} - \frac{53}{256} a^{15} + \frac{1}{256} a^{13} - \frac{11}{128} a^{11} + \frac{33}{512} a^{9} + \frac{25}{64} a^{7} + \frac{3}{16} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{1024} a^{26} - \frac{1}{1024} a^{24} + \frac{3}{1024} a^{22} + \frac{3}{512} a^{20} - \frac{33}{1024} a^{18} + \frac{203}{512} a^{16} + \frac{1}{512} a^{14} - \frac{11}{256} a^{12} - \frac{479}{1024} a^{10} + \frac{25}{128} a^{8} - \frac{13}{32} a^{6} + \frac{1}{16} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{2048} a^{27} - \frac{1}{2048} a^{25} + \frac{3}{2048} a^{23} + \frac{3}{1024} a^{21} - \frac{33}{2048} a^{19} + \frac{203}{1024} a^{17} + \frac{1}{1024} a^{15} + \frac{245}{512} a^{13} - \frac{479}{2048} a^{11} - \frac{103}{256} a^{9} + \frac{19}{64} a^{7} - \frac{15}{32} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{274432} a^{28} + \frac{83}{274432} a^{26} - \frac{193}{274432} a^{24} + \frac{985}{137216} a^{22} - \frac{1721}{274432} a^{20} + \frac{14833}{137216} a^{18} - \frac{36587}{137216} a^{16} + \frac{22695}{68608} a^{14} + \frac{24913}{274432} a^{12} - \frac{169}{68608} a^{10} - \frac{2679}{17152} a^{8} + \frac{381}{2144} a^{6} - \frac{255}{1072} a^{4} + \frac{29}{134} a^{2} + \frac{1}{67}$, $\frac{1}{548864} a^{29} + \frac{83}{548864} a^{27} - \frac{193}{548864} a^{25} + \frac{985}{274432} a^{23} - \frac{1721}{548864} a^{21} + \frac{14833}{274432} a^{19} - \frac{36587}{274432} a^{17} - \frac{45913}{137216} a^{15} + \frac{24913}{548864} a^{13} - \frac{169}{137216} a^{11} - \frac{2679}{34304} a^{9} - \frac{1763}{4288} a^{7} + \frac{817}{2144} a^{5} - \frac{105}{268} a^{3} + \frac{1}{134} a$, $\frac{1}{773002429543109060063313563592094401347584} a^{30} - \frac{47716590753688898974014283547237349}{59461725349469927697177966430161107795968} a^{28} - \frac{10868583391807147834022774959642068557}{773002429543109060063313563592094401347584} a^{26} + \frac{424418181703347258171071858047093611979}{386501214771554530031656781796047200673792} a^{24} + \frac{5590340536574526115222377736841456197071}{773002429543109060063313563592094401347584} a^{22} - \frac{12035866073063120407701290681210551978101}{386501214771554530031656781796047200673792} a^{20} + \frac{17023783142503132028502907859222341744281}{386501214771554530031656781796047200673792} a^{18} - \frac{79129992037207870863672558708396057983395}{193250607385777265015828390898023600336896} a^{16} + \frac{223523103979098207368737366129652330195905}{773002429543109060063313563592094401347584} a^{14} - \frac{3629880557189399743193226912930012441919}{7432715668683740962147245803770138474496} a^{12} - \frac{18150831793596387355832204274514341439769}{48312651846444316253957097724505900084224} a^{10} - \frac{165747709174926898005274801766371837907}{12078162961611079063489274431126475021056} a^{8} + \frac{156062894099062465317359658339889143801}{1509770370201384882936159303890809377632} a^{6} + \frac{55204587116124774666686840927004017131}{188721296275173110367019912986351172204} a^{4} - \frac{52576656292083148392521027483997592839}{188721296275173110367019912986351172204} a^{2} - \frac{5705969223469131917267849311120117497}{47180324068793277591754978246587793051}$, $\frac{1}{1546004859086218120126627127184188802695168} a^{31} - \frac{47716590753688898974014283547237349}{118923450698939855394355932860322215591936} a^{29} - \frac{10868583391807147834022774959642068557}{1546004859086218120126627127184188802695168} a^{27} + \frac{424418181703347258171071858047093611979}{773002429543109060063313563592094401347584} a^{25} + \frac{5590340536574526115222377736841456197071}{1546004859086218120126627127184188802695168} a^{23} - \frac{12035866073063120407701290681210551978101}{773002429543109060063313563592094401347584} a^{21} + \frac{17023783142503132028502907859222341744281}{773002429543109060063313563592094401347584} a^{19} - \frac{79129992037207870863672558708396057983395}{386501214771554530031656781796047200673792} a^{17} + \frac{223523103979098207368737366129652330195905}{1546004859086218120126627127184188802695168} a^{15} + \frac{3802835111494341218954018890840126032577}{14865431337367481924294491607540276948992} a^{13} + \frac{30161820052847928898124893449991558644455}{96625303692888632507914195449011800168448} a^{11} + \frac{11912415252436152165483999629360103183149}{24156325923222158126978548862252950042112} a^{9} + \frac{156062894099062465317359658339889143801}{3019540740402769765872318607781618755264} a^{7} - \frac{133516709159048335700333072059347155073}{377442592550346220734039825972702344408} a^{5} + \frac{136144639983089961974498885502353579365}{377442592550346220734039825972702344408} a^{3} + \frac{20737177422662072837243564467733837777}{47180324068793277591754978246587793051} a$
Class group and class number
$C_{3}\times C_{120}$, which has order $360$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{407994202068554377171}{56862968055878267369455616} a^{31} - \frac{1412217611216386191567}{4374074465836789797650432} a^{29} + \frac{404278775057077237277737}{56862968055878267369455616} a^{27} - \frac{2815872336681880618842735}{28431484027939133684727808} a^{25} + \frac{54782667711934794516342381}{56862968055878267369455616} a^{23} - \frac{194859562130025958110199415}{28431484027939133684727808} a^{21} + \frac{1036957412031248295976424323}{28431484027939133684727808} a^{19} - \frac{2079942311201895363050381945}{14215742013969566842363904} a^{17} + \frac{25092854252642908498656206579}{56862968055878267369455616} a^{15} - \frac{540077568429486069053622551}{546759308229598724706304} a^{13} + \frac{2849667876515826623737028837}{1776967751746195855295488} a^{11} - \frac{403571521856565707558667655}{222120968968274481911936} a^{9} + \frac{150721644874025912329968511}{111060484484137240955968} a^{7} - \frac{8306666533486751680405267}{13882560560517155119496} a^{5} + \frac{461808600036415282777527}{3470640140129288779874} a^{3} - \frac{8485425913117011379564}{1735320070064644389937} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20780022383218.207 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||