Properties

Label 32.0.40266928876...0000.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{16}\cdot 7^{16}$
Root discriminant $40.99$
Ramified primes $2, 3, 5, 7$
Class number Not computed
Class group Not computed
Galois group $C_2^5$ (as 32T39)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![65536, 0, 0, 0, -28672, 0, 0, 0, -180224, 0, 0, 0, -80752, 0, 0, 0, 565969, 0, 0, 0, -5047, 0, 0, 0, -704, 0, 0, 0, -7, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 7*x^28 - 704*x^24 - 5047*x^20 + 565969*x^16 - 80752*x^12 - 180224*x^8 - 28672*x^4 + 65536)
 
gp: K = bnfinit(x^32 - 7*x^28 - 704*x^24 - 5047*x^20 + 565969*x^16 - 80752*x^12 - 180224*x^8 - 28672*x^4 + 65536, 1)
 

Normalized defining polynomial

\( x^{32} - 7 x^{28} - 704 x^{24} - 5047 x^{20} + 565969 x^{16} - 80752 x^{12} - 180224 x^{8} - 28672 x^{4} + 65536 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4026692887688564776141139207792885760000000000000000=2^{64}\cdot 3^{16}\cdot 5^{16}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(391,·)$, $\chi_{840}(139,·)$, $\chi_{840}(659,·)$, $\chi_{840}(281,·)$, $\chi_{840}(29,·)$, $\chi_{840}(671,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(41,·)$, $\chi_{840}(811,·)$, $\chi_{840}(559,·)$, $\chi_{840}(181,·)$, $\chi_{840}(799,·)$, $\chi_{840}(769,·)$, $\chi_{840}(701,·)$, $\chi_{840}(449,·)$, $\chi_{840}(839,·)$, $\chi_{840}(631,·)$, $\chi_{840}(589,·)$, $\chi_{840}(461,·)$, $\chi_{840}(209,·)$, $\chi_{840}(211,·)$, $\chi_{840}(601,·)$, $\chi_{840}(71,·)$, $\chi_{840}(349,·)$, $\chi_{840}(379,·)$, $\chi_{840}(491,·)$, $\chi_{840}(239,·)$, $\chi_{840}(629,·)$, $\chi_{840}(169,·)$, $\chi_{840}(251,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9}$, $\frac{1}{18} a^{13} + \frac{1}{18} a$, $\frac{1}{36} a^{14} + \frac{1}{36} a^{2}$, $\frac{1}{72} a^{15} + \frac{1}{72} a^{3}$, $\frac{1}{432} a^{16} + \frac{1}{27} a^{12} + \frac{1}{9} a^{8} + \frac{169}{432} a^{4} + \frac{4}{27}$, $\frac{1}{432} a^{17} - \frac{1}{54} a^{13} + \frac{1}{9} a^{9} + \frac{169}{432} a^{5} + \frac{5}{54} a$, $\frac{1}{432} a^{18} + \frac{1}{108} a^{14} + \frac{1}{9} a^{10} + \frac{169}{432} a^{6} + \frac{13}{108} a^{2}$, $\frac{1}{432} a^{19} - \frac{1}{216} a^{15} + \frac{1}{9} a^{11} + \frac{169}{432} a^{7} + \frac{23}{216} a^{3}$, $\frac{1}{432} a^{20} - \frac{1}{27} a^{12} - \frac{23}{432} a^{8} - \frac{4}{9} a^{4} + \frac{11}{27}$, $\frac{1}{864} a^{21} - \frac{1}{864} a^{17} + \frac{1}{54} a^{13} + \frac{73}{864} a^{9} + \frac{359}{864} a^{5} - \frac{4}{27} a$, $\frac{1}{1728} a^{22} + \frac{1}{1728} a^{18} - \frac{119}{1728} a^{10} - \frac{743}{1728} a^{6} + \frac{11}{36} a^{2}$, $\frac{1}{3456} a^{23} + \frac{1}{3456} a^{19} + \frac{457}{3456} a^{11} + \frac{409}{3456} a^{7} + \frac{23}{72} a^{3}$, $\frac{1}{9020160} a^{24} + \frac{7}{601344} a^{20} - \frac{41}{37584} a^{16} - \frac{419767}{9020160} a^{12} - \frac{79313}{601344} a^{8} - \frac{4555}{18792} a^{4} + \frac{6541}{35235}$, $\frac{1}{18040320} a^{25} + \frac{7}{1202688} a^{21} - \frac{41}{75168} a^{17} - \frac{419767}{18040320} a^{13} - \frac{79313}{1202688} a^{9} + \frac{14237}{37584} a^{5} + \frac{6541}{70470} a$, $\frac{1}{36080640} a^{26} + \frac{7}{2405376} a^{22} + \frac{133}{150336} a^{18} + \frac{248393}{36080640} a^{14} + \frac{54319}{2405376} a^{10} + \frac{7235}{18792} a^{6} + \frac{16981}{140940} a^{2}$, $\frac{1}{72161280} a^{27} + \frac{7}{4810752} a^{23} + \frac{133}{300672} a^{19} + \frac{248393}{72161280} a^{15} - \frac{747473}{4810752} a^{11} - \frac{5293}{37584} a^{7} - \frac{29999}{281880} a^{3}$, $\frac{1}{417484755763200} a^{28} - \frac{9168791}{417484755763200} a^{24} + \frac{1806059933}{1739519815680} a^{20} - \frac{399491321527}{417484755763200} a^{16} + \frac{4033053919937}{417484755763200} a^{12} - \frac{8020821793}{108719988480} a^{8} - \frac{18239175839}{101924989200} a^{4} + \frac{4977957769}{101924989200}$, $\frac{1}{834969511526400} a^{29} - \frac{9168791}{834969511526400} a^{25} + \frac{1806059933}{3479039631360} a^{21} - \frac{399491321527}{834969511526400} a^{17} + \frac{4033053919937}{834969511526400} a^{13} + \frac{28219174367}{217439976960} a^{9} + \frac{49710816961}{203849978400} a^{5} - \frac{62972035031}{203849978400} a$, $\frac{1}{1669939023052800} a^{30} - \frac{9168791}{1669939023052800} a^{26} + \frac{1806059933}{6958079262720} a^{22} + \frac{1533308473673}{1669939023052800} a^{18} - \frac{11429344441663}{1669939023052800} a^{14} + \frac{52379171807}{434879953920} a^{10} + \frac{129457683511}{407699956800} a^{6} - \frac{44097037031}{407699956800} a^{2}$, $\frac{1}{3339878046105600} a^{31} - \frac{9168791}{3339878046105600} a^{27} + \frac{1806059933}{13916158525440} a^{23} - \frac{2332291116727}{3339878046105600} a^{19} + \frac{19495452281537}{3339878046105600} a^{15} - \frac{140900807713}{869759907840} a^{11} - \frac{301836020789}{815399913600} a^{7} - \frac{217747018631}{815399913600} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{10002394073}{3339878046105600} a^{31} - \frac{47178166783}{3339878046105600} a^{27} - \frac{30022469771}{13916158525440} a^{23} - \frac{66534600394271}{3339878046105600} a^{19} + \frac{5548482660848281}{3339878046105600} a^{15} + \frac{3160937174461}{869759907840} a^{11} - \frac{708699417311}{407699956800} a^{7} - \frac{1076519987503}{815399913600} a^{3} \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^5$ (as 32T39):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^5$
Character table for $C_2^5$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{42}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{210})\), \(\Q(i, \sqrt{105})\), \(\Q(\sqrt{-2}, \sqrt{-105})\), \(\Q(\sqrt{-2}, \sqrt{105})\), \(\Q(\sqrt{2}, \sqrt{105})\), \(\Q(\sqrt{2}, \sqrt{-105})\), \(\Q(i, \sqrt{70})\), \(\Q(i, \sqrt{35})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{-2}, \sqrt{35})\), \(\Q(\sqrt{-2}, \sqrt{-35})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-35})\), \(\Q(\sqrt{2}, \sqrt{35})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{-3}, \sqrt{-70})\), \(\Q(\sqrt{3}, \sqrt{70})\), \(\Q(\sqrt{6}, \sqrt{35})\), \(\Q(\sqrt{-6}, \sqrt{-35})\), \(\Q(\sqrt{3}, \sqrt{-70})\), \(\Q(\sqrt{-3}, \sqrt{70})\), \(\Q(\sqrt{-6}, \sqrt{35})\), \(\Q(\sqrt{6}, \sqrt{-35})\), \(\Q(\sqrt{6}, \sqrt{-70})\), \(\Q(\sqrt{-6}, \sqrt{70})\), \(\Q(\sqrt{-3}, \sqrt{35})\), \(\Q(\sqrt{3}, \sqrt{-35})\), \(\Q(\sqrt{-6}, \sqrt{-70})\), \(\Q(\sqrt{6}, \sqrt{70})\), \(\Q(\sqrt{3}, \sqrt{35})\), \(\Q(\sqrt{-3}, \sqrt{-35})\), \(\Q(i, \sqrt{14})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{15})\), \(\Q(i, \sqrt{30})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{42})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{15})\), \(\Q(\sqrt{-2}, \sqrt{-15})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\sqrt{-2}, \sqrt{-21})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{2}, \sqrt{21})\), \(\Q(\sqrt{14}, \sqrt{15})\), \(\Q(\sqrt{-14}, \sqrt{-15})\), \(\Q(\sqrt{-7}, \sqrt{-30})\), \(\Q(\sqrt{7}, \sqrt{30})\), \(\Q(\sqrt{-5}, \sqrt{-42})\), \(\Q(\sqrt{5}, \sqrt{42})\), \(\Q(\sqrt{10}, \sqrt{21})\), \(\Q(\sqrt{-10}, \sqrt{-21})\), \(\Q(\sqrt{14}, \sqrt{-15})\), \(\Q(\sqrt{-14}, \sqrt{15})\), \(\Q(\sqrt{-7}, \sqrt{30})\), \(\Q(\sqrt{7}, \sqrt{-30})\), \(\Q(\sqrt{-5}, \sqrt{42})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{10}, \sqrt{-21})\), \(\Q(\sqrt{-10}, \sqrt{21})\), \(\Q(\sqrt{14}, \sqrt{-30})\), \(\Q(\sqrt{-14}, \sqrt{30})\), \(\Q(\sqrt{-7}, \sqrt{15})\), \(\Q(\sqrt{7}, \sqrt{-15})\), \(\Q(\sqrt{-5}, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{10}, \sqrt{-42})\), \(\Q(\sqrt{-10}, \sqrt{42})\), \(\Q(\sqrt{14}, \sqrt{30})\), \(\Q(\sqrt{-14}, \sqrt{-30})\), \(\Q(\sqrt{-7}, \sqrt{-15})\), \(\Q(\sqrt{7}, \sqrt{15})\), \(\Q(\sqrt{-5}, \sqrt{-21})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{10}, \sqrt{42})\), \(\Q(\sqrt{-10}, \sqrt{-42})\), \(\Q(\sqrt{-5}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\sqrt{7}, \sqrt{-10})\), \(\Q(\sqrt{15}, \sqrt{-42})\), \(\Q(\sqrt{-15}, \sqrt{42})\), \(\Q(\sqrt{21}, \sqrt{-30})\), \(\Q(\sqrt{-21}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{-5}, \sqrt{-14})\), \(\Q(\sqrt{-7}, \sqrt{-10})\), \(\Q(\sqrt{7}, \sqrt{10})\), \(\Q(\sqrt{15}, \sqrt{42})\), \(\Q(\sqrt{-15}, \sqrt{-42})\), \(\Q(\sqrt{-21}, \sqrt{-30})\), \(\Q(\sqrt{21}, \sqrt{30})\), \(\Q(\sqrt{10}, \sqrt{14})\), \(\Q(\sqrt{-10}, \sqrt{-14})\), \(\Q(\sqrt{-5}, \sqrt{-7})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{15}, \sqrt{21})\), \(\Q(\sqrt{-15}, \sqrt{-21})\), \(\Q(\sqrt{-30}, \sqrt{35})\), \(\Q(\sqrt{30}, \sqrt{35})\), \(\Q(\sqrt{-10}, \sqrt{14})\), \(\Q(\sqrt{10}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{-5}, \sqrt{7})\), \(\Q(\sqrt{15}, \sqrt{-21})\), \(\Q(\sqrt{-15}, \sqrt{21})\), \(\Q(\sqrt{-30}, \sqrt{-35})\), \(\Q(\sqrt{30}, \sqrt{-35})\), \(\Q(\sqrt{-3}, \sqrt{14})\), \(\Q(\sqrt{-3}, \sqrt{-14})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{-3}, \sqrt{-10})\), \(\Q(\sqrt{3}, \sqrt{14})\), \(\Q(\sqrt{3}, \sqrt{-14})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\sqrt{3}, \sqrt{-10})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{6}, \sqrt{-14})\), \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\sqrt{6}, \sqrt{7})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{6}, \sqrt{-10})\), \(\Q(\sqrt{-5}, \sqrt{6})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{-6}, \sqrt{14})\), \(\Q(\sqrt{-6}, \sqrt{-14})\), \(\Q(\sqrt{-6}, \sqrt{-7})\), \(\Q(\sqrt{-6}, \sqrt{7})\), \(\Q(\sqrt{-6}, \sqrt{-10})\), \(\Q(\sqrt{-6}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-5}, \sqrt{-6})\), 8.0.7965941760000.69, 8.0.98344960000.9, \(\Q(\zeta_{24})\), 8.0.7965941760000.70, 8.0.7965941760000.54, 8.0.7965941760000.44, 8.0.31116960000.10, 8.0.7965941760000.66, 8.0.7965941760000.35, 8.0.7965941760000.57, 8.0.497871360000.17, 8.0.497871360000.14, 8.8.7965941760000.5, 8.0.7965941760000.58, 8.0.7965941760000.67, 8.0.157351936.1, 8.0.3317760000.4, 8.0.40960000.1, 8.0.12745506816.8, 8.0.7965941760000.41, 8.0.7965941760000.65, 8.0.7965941760000.68, 8.0.7965941760000.39, 8.0.7965941760000.3, 8.0.31116960000.7, 8.0.31116960000.8, 8.0.7965941760000.13, 8.0.7965941760000.26, 8.0.7965941760000.10, 8.0.7965941760000.12, 8.0.7965941760000.55, 8.0.497871360000.3, 8.0.7965941760000.24, 8.0.7965941760000.4, 8.0.497871360000.13, 8.8.7965941760000.4, 8.0.497871360000.10, 8.0.7965941760000.33, 8.8.497871360000.1, 8.0.7965941760000.38, 8.0.7965941760000.47, 8.0.7965941760000.40, 8.0.7965941760000.62, 8.0.98344960000.8, 8.0.98344960000.7, 8.0.7965941760000.63, 8.0.7965941760000.21, 8.0.98344960000.2, 8.0.384160000.1, 8.0.31116960000.4, 8.0.7965941760000.50, 8.0.12745506816.9, 8.0.49787136.1, 8.0.12960000.1, 8.0.3317760000.2, 8.0.12745506816.1, 8.0.12745506816.7, 8.0.3317760000.5, 8.0.3317760000.9, 8.0.98344960000.5, 8.0.98344960000.6, 8.0.7965941760000.28, 8.0.7965941760000.34, 8.0.6146560000.1, 8.0.98344960000.4, 8.0.7965941760000.17, 8.0.497871360000.8, 8.0.796594176.1, 8.0.12745506816.5, 8.0.3317760000.8, 8.0.207360000.2, 8.0.12745506816.2, 8.0.12745506816.3, 8.0.3317760000.7, 8.0.3317760000.1, 8.0.98344960000.3, 8.0.6146560000.2, 8.0.7965941760000.16, 8.0.497871360000.1, 8.8.98344960000.1, 8.0.98344960000.1, 8.8.7965941760000.8, 8.0.7965941760000.32, 8.0.12745506816.4, 8.0.796594176.2, 8.0.3317760000.3, 8.0.207360000.1, 8.8.12745506816.1, 8.0.12745506816.6, 8.8.3317760000.1, 8.0.3317760000.6, 8.0.7965941760000.61, 8.0.497871360000.19, 8.0.497871360000.16, 8.0.7965941760000.48, 8.8.7965941760000.2, 8.0.7965941760000.42, 8.0.7965941760000.19, 8.8.7965941760000.1, 8.8.7965941760000.3, 8.0.7965941760000.15, 8.0.7965941760000.45, 8.8.7965941760000.9, 8.0.7965941760000.51, 8.0.497871360000.5, 8.0.497871360000.9, 8.0.7965941760000.36, 8.0.7965941760000.64, 8.0.7965941760000.53, 8.0.7965941760000.43, 8.0.7965941760000.60, 8.0.497871360000.20, 8.0.7965941760000.49, 8.0.497871360000.18, 8.0.7965941760000.9, 8.0.7965941760000.37, 8.0.7965941760000.46, 8.0.7965941760000.56, 8.0.7965941760000.59, 8.0.497871360000.4, 8.0.7965941760000.52, 8.0.497871360000.15, 8.0.7965941760000.31, 8.0.7965941760000.8, 8.0.7965941760000.27, 8.0.7965941760000.14, 8.0.7965941760000.30, 8.0.7965941760000.18, 8.0.7965941760000.5, 8.0.7965941760000.11, 8.0.7965941760000.29, 8.0.7965941760000.2, 8.0.7965941760000.1, 8.0.31116960000.3, 8.0.31116960000.9, 8.0.7965941760000.6, 8.0.7965941760000.7, 8.0.31116960000.6, 8.0.31116960000.5, 8.0.7965941760000.25, 8.0.497871360000.6, 8.0.497871360000.7, 8.0.7965941760000.20, 8.8.497871360000.2, 8.0.7965941760000.23, 8.0.497871360000.2, 8.8.7965941760000.6, 8.8.7965941760000.7, 8.0.7965941760000.22, 8.0.31116960000.1, 8.8.31116960000.1, 8.0.497871360000.12, 8.0.497871360000.11, 8.0.121550625.1, 8.0.31116960000.2, 16.0.63456228123711897600000000.10, 16.0.63456228123711897600000000.12, 16.0.63456228123711897600000000.6, 16.0.9671731157401600000000.1, 16.0.63456228123711897600000000.5, 16.0.162447943996702457856.1, 16.0.11007531417600000000.1, 16.0.63456228123711897600000000.17, 16.0.63456228123711897600000000.7, 16.0.63456228123711897600000000.9, 16.0.63456228123711897600000000.13, 16.0.63456228123711897600000000.3, 16.0.63456228123711897600000000.20, 16.0.63456228123711897600000000.4, 16.0.968265199641600000000.1, 16.0.63456228123711897600000000.21, 16.0.63456228123711897600000000.15, 16.0.63456228123711897600000000.24, 16.0.63456228123711897600000000.2, 16.0.63456228123711897600000000.19, 16.0.63456228123711897600000000.22, 16.0.247875891108249600000000.2, 16.0.63456228123711897600000000.8, 16.0.63456228123711897600000000.1, 16.0.247875891108249600000000.1, 16.16.63456228123711897600000000.1, 16.0.63456228123711897600000000.23, 16.0.63456228123711897600000000.11, 16.0.63456228123711897600000000.18, 16.0.63456228123711897600000000.14, 16.0.63456228123711897600000000.16

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$