Properties

Label 32.0.40176147827...0000.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{96}\cdot 5^{16}\cdot 7^{16}$
Root discriminant $47.33$
Ramified primes $2, 5, 7$
Class number $128$ (GRH)
Class group $[2, 8, 8]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![65536, 0, 0, 0, 0, 0, 0, 0, -372992, 0, 0, 0, 0, 0, 0, 0, 565953, 0, 0, 0, 0, 0, 0, 0, -1457, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 1457*x^24 + 565953*x^16 - 372992*x^8 + 65536)
 
gp: K = bnfinit(x^32 - 1457*x^24 + 565953*x^16 - 372992*x^8 + 65536, 1)
 

Normalized defining polynomial

\( x^{32} - 1457 x^{24} + 565953 x^{16} - 372992 x^{8} + 65536 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(401761478270509541172805101174925557760000000000000000=2^{96}\cdot 5^{16}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $47.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(560=2^{4}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{560}(1,·)$, $\chi_{560}(391,·)$, $\chi_{560}(139,·)$, $\chi_{560}(141,·)$, $\chi_{560}(531,·)$, $\chi_{560}(279,·)$, $\chi_{560}(281,·)$, $\chi_{560}(111,·)$, $\chi_{560}(29,·)$, $\chi_{560}(419,·)$, $\chi_{560}(421,·)$, $\chi_{560}(41,·)$, $\chi_{560}(519,·)$, $\chi_{560}(321,·)$, $\chi_{560}(559,·)$, $\chi_{560}(181,·)$, $\chi_{560}(309,·)$, $\chi_{560}(449,·)$, $\chi_{560}(69,·)$, $\chi_{560}(71,·)$, $\chi_{560}(461,·)$, $\chi_{560}(209,·)$, $\chi_{560}(211,·)$, $\chi_{560}(349,·)$, $\chi_{560}(351,·)$, $\chi_{560}(99,·)$, $\chi_{560}(379,·)$, $\chi_{560}(489,·)$, $\chi_{560}(491,·)$, $\chi_{560}(239,·)$, $\chi_{560}(169,·)$, $\chi_{560}(251,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{7}$, $\frac{1}{63} a^{16} - \frac{4}{63} a^{8} + \frac{4}{63}$, $\frac{1}{126} a^{17} + \frac{17}{126} a^{9} + \frac{25}{126} a$, $\frac{1}{252} a^{18} - \frac{25}{252} a^{10} + \frac{109}{252} a^{2}$, $\frac{1}{504} a^{19} - \frac{25}{504} a^{11} - \frac{143}{504} a^{3}$, $\frac{1}{1008} a^{20} + \frac{143}{1008} a^{12} - \frac{479}{1008} a^{4}$, $\frac{1}{2016} a^{21} + \frac{143}{2016} a^{13} - \frac{479}{2016} a^{5}$, $\frac{1}{4032} a^{22} + \frac{143}{4032} a^{14} + \frac{1537}{4032} a^{6}$, $\frac{1}{8064} a^{23} - \frac{1201}{8064} a^{15} + \frac{193}{8064} a^{7}$, $\frac{1}{3034983168} a^{24} + \frac{3625669}{1011661056} a^{16} - \frac{112406549}{1011661056} a^{8} + \frac{788758}{11855403}$, $\frac{1}{6069966336} a^{25} + \frac{3625669}{2023322112} a^{17} + \frac{224813803}{2023322112} a^{9} + \frac{4740559}{23710806} a$, $\frac{1}{12139932672} a^{26} + \frac{3625669}{4046644224} a^{18} + \frac{224813803}{4046644224} a^{10} - \frac{18970247}{47421612} a^{2}$, $\frac{1}{24279865344} a^{27} + \frac{3625669}{8093288448} a^{19} - \frac{1124067605}{8093288448} a^{11} - \frac{34777451}{94843224} a^{3}$, $\frac{1}{48559730688} a^{28} + \frac{3625669}{16186576896} a^{20} - \frac{1124067605}{16186576896} a^{12} + \frac{60065773}{189686448} a^{4}$, $\frac{1}{97119461376} a^{29} + \frac{3625669}{32373153792} a^{21} - \frac{1124067605}{32373153792} a^{13} + \frac{60065773}{379372896} a^{5}$, $\frac{1}{194238922752} a^{30} + \frac{3625669}{64746307584} a^{22} - \frac{1124067605}{64746307584} a^{14} - \frac{319307123}{758745792} a^{6}$, $\frac{1}{388477845504} a^{31} + \frac{3625669}{129492615168} a^{23} + \frac{20458034923}{129492615168} a^{15} - \frac{66391859}{1517491584} a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{8}\times C_{8}$, which has order $128$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{136187}{6069966336} a^{25} + \frac{66134233}{2023322112} a^{17} - \frac{25676808809}{2023322112} a^{9} + \frac{54395189}{11855403} a \) (order $16$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3469532895544.2065 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(i, \sqrt{70})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{14})\), \(\Q(\sqrt{-5}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-5}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{35})\), \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{2}, \sqrt{-35})\), \(\Q(\sqrt{-2}, \sqrt{35})\), \(\Q(\sqrt{7}, \sqrt{-10})\), \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{35})\), \(\Q(\sqrt{-2}, \sqrt{-35})\), \(\Q(\sqrt{-7}, \sqrt{-10})\), \(\Q(\sqrt{7}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{-5}, \sqrt{7})\), \(\Q(\sqrt{-5}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{-10}, \sqrt{14})\), \(\Q(\sqrt{10}, \sqrt{14})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(\sqrt{10}, \sqrt{-14})\), \(\Q(\sqrt{-10}, \sqrt{-14})\), 4.4.2508800.1, 4.0.2508800.1, 4.0.2048.2, \(\Q(\zeta_{16})^+\), 4.0.100352.5, 4.4.100352.1, 4.4.51200.1, 4.0.51200.2, 8.0.98344960000.8, 8.0.98344960000.9, 8.0.98344960000.7, 8.0.40960000.1, 8.0.384160000.1, 8.0.157351936.1, 8.0.98344960000.2, 8.0.98344960000.3, 8.0.98344960000.5, 8.0.6146560000.2, 8.0.98344960000.6, 8.0.98344960000.1, 8.0.98344960000.4, 8.8.98344960000.1, 8.0.6146560000.1, 8.0.25176309760000.55, \(\Q(\zeta_{16})\), 8.0.40282095616.2, 8.0.10485760000.3, 8.0.6294077440000.4, 8.0.6294077440000.6, 8.0.6294077440000.2, 8.0.6294077440000.1, 8.8.25176309760000.2, 8.0.25176309760000.40, 8.0.25176309760000.66, 8.8.25176309760000.5, 8.0.25176309760000.32, 8.0.25176309760000.44, 8.0.10485760000.1, 8.0.10485760000.2, 8.8.6294077440000.1, 8.0.6294077440000.7, 8.0.2621440000.1, 8.8.2621440000.1, 8.8.25176309760000.1, 8.0.25176309760000.41, 8.0.40282095616.1, 8.8.40282095616.1, 8.0.6294077440000.3, 8.0.6294077440000.5, 8.0.10070523904.1, 8.0.10070523904.2, 16.0.9671731157401600000000.1, 16.0.633846573131471257600000000.3, 16.0.633846573131471257600000000.5, 16.0.633846573131471257600000000.2, 16.0.109951162777600000000.1, 16.0.633846573131471257600000000.1, 16.0.1622647227216566419456.1, 16.0.633846573131471257600000000.8, 16.0.633846573131471257600000000.6, 16.0.39615410820716953600000000.2, 16.0.39615410820716953600000000.1, 16.0.633846573131471257600000000.4, 16.0.633846573131471257600000000.7, 16.16.633846573131471257600000000.1, 16.0.633846573131471257600000000.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ R R ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$