/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^32 + 9*x^30 + 40*x^28 + 119*x^26 + 271*x^24 + 495*x^22 + 752*x^20 + 1105*x^18 + 1941*x^16 + 4420*x^14 + 12032*x^12 + 31680*x^10 + 69376*x^8 + 121856*x^6 + 163840*x^4 + 147456*x^2 + 65536, 32, 12882, [0, 16], 38959704907616347430279100767614402560000000000000000, [2, 3, 5, 29, 1289], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, a^16, 1/2*a^17 - 1/2*a^15 - 1/2*a^11 - 1/2*a^9 - 1/2*a^7 - 1/2*a^3 - 1/2*a, 1/4*a^18 + 1/4*a^16 - 1/4*a^12 - 1/4*a^10 - 1/4*a^8 + 1/4*a^4 + 1/4*a^2, 1/8*a^19 + 1/8*a^17 - 1/8*a^13 - 1/8*a^11 - 1/8*a^9 + 1/8*a^5 - 3/8*a^3 - 1/2*a, 1/16*a^20 + 1/16*a^18 + 7/16*a^14 + 7/16*a^12 + 7/16*a^10 - 1/2*a^8 + 1/16*a^6 - 3/16*a^4 - 1/4*a^2, 1/32*a^21 + 1/32*a^19 - 9/32*a^15 - 9/32*a^13 - 9/32*a^11 - 1/4*a^9 - 15/32*a^7 + 13/32*a^5 - 1/8*a^3, 1/64*a^22 + 1/64*a^20 + 23/64*a^16 + 23/64*a^14 + 23/64*a^12 + 3/8*a^10 - 15/64*a^8 + 13/64*a^6 - 1/16*a^4, 1/128*a^23 + 1/128*a^21 + 23/128*a^17 + 23/128*a^15 - 41/128*a^13 + 3/16*a^11 - 15/128*a^9 - 51/128*a^7 + 15/32*a^5 - 1/2*a^3, 1/256*a^24 + 1/256*a^22 + 23/256*a^18 + 23/256*a^16 + 87/256*a^14 - 13/32*a^12 - 15/256*a^10 + 77/256*a^8 - 17/64*a^6 + 1/4*a^4, 1/512*a^25 + 1/512*a^23 + 23/512*a^19 + 23/512*a^17 + 87/512*a^15 - 13/64*a^13 + 241/512*a^11 - 179/512*a^9 + 47/128*a^7 - 3/8*a^5 - 1/2*a^3, 1/1024*a^26 + 1/1024*a^24 + 23/1024*a^20 + 23/1024*a^18 - 425/1024*a^16 - 13/128*a^14 - 271/1024*a^12 - 179/1024*a^10 - 81/256*a^8 - 3/16*a^6 - 1/4*a^4, 1/2048*a^27 + 1/2048*a^25 + 23/2048*a^21 + 23/2048*a^19 - 425/2048*a^17 - 13/256*a^15 - 271/2048*a^13 - 179/2048*a^11 + 175/512*a^9 + 13/32*a^7 - 1/8*a^5 - 1/2*a, 1/185495552*a^28 - 17207/185495552*a^26 - 37941/23186944*a^24 + 392935/185495552*a^22 + 2685519/185495552*a^20 - 7040193/185495552*a^18 - 1013983/2898368*a^16 - 49397919/185495552*a^14 + 63724245/185495552*a^12 - 14076515/46373888*a^10 - 4791365/11593472*a^8 - 52611/362296*a^6 - 18325/362296*a^4 + 67033/181148*a^2 + 4/45287, 1/370991104*a^29 - 17207/370991104*a^27 - 37941/46373888*a^25 + 392935/370991104*a^23 + 2685519/370991104*a^21 - 7040193/370991104*a^19 - 1013983/5796736*a^17 - 49397919/370991104*a^15 - 121771307/370991104*a^13 + 32297373/92747776*a^11 - 4791365/23186944*a^9 - 52611/724592*a^7 - 18325/724592*a^5 + 67033/362296*a^3 + 2/45287*a, 1/156558245888*a^30 - 411/156558245888*a^28 + 1218013/39139561472*a^26 + 262868263/156558245888*a^24 - 573937389/156558245888*a^22 - 1464794173/156558245888*a^20 - 196890713/1701720064*a^18 - 45839444799/156558245888*a^16 + 53659721457/156558245888*a^14 + 1802344455/4892445184*a^12 - 324339627/1223111296*a^10 + 436497351/2446222592*a^8 - 57366079/305777824*a^6 - 40518243/152888912*a^4 - 698732/9555557*a^2 + 1194258/9555557, 1/313116491776*a^31 - 411/313116491776*a^29 + 1218013/78279122944*a^27 + 262868263/313116491776*a^25 - 573937389/313116491776*a^23 - 1464794173/313116491776*a^21 - 196890713/3403440128*a^19 - 45839444799/313116491776*a^17 - 102898524431/313116491776*a^15 - 3090100729/9784890368*a^13 - 324339627/2446222592*a^11 - 2009725241/4892445184*a^9 + 248411745/611555648*a^7 + 112370669/305777824*a^5 - 349366/9555557*a^3 - 8361299/19111114*a], 1, 38, [38], 1, [ (485373)/(2446222592)*a^(30) + (2570531)/(4892445184)*a^(28) - (3420985)/(9784890368)*a^(26) - (173101)/(54664192)*a^(24) - (54198135)/(4892445184)*a^(22) - (273256979)/(9784890368)*a^(20) - (369343655)/(9784890368)*a^(18) - (341282273)/(9784890368)*a^(16) - (313481533)/(4892445184)*a^(14) - (23212227)/(889535488)*a^(12) - (813291119)/(9784890368)*a^(10) - (2400453371)/(2446222592)*a^(8) - (459501299)/(152888912)*a^(6) - (64698213)/(9555557)*a^(4) - (465636093)/(38222228)*a^(2) - (104898921)/(9555557) , (257293)/(370991104)*a^(30) + (1693785)/(370991104)*a^(28) + (1403935)/(92747776)*a^(26) + (13504411)/(370991104)*a^(24) + (26512831)/(370991104)*a^(22) + (39939599)/(370991104)*a^(20) + (1214549)/(8431616)*a^(18) + (94455789)/(370991104)*a^(16) + (192341301)/(370991104)*a^(14) + (64742915)/(46373888)*a^(12) + (23700439)/(5796736)*a^(10) + (6901933)/(724592)*a^(8) + (50699069)/(2898368)*a^(6) + (9266459)/(362296)*a^(4) + (1062948)/(45287)*a^(2) + (365690)/(45287) , (52117223)/(313116491776)*a^(31) + (452695779)/(313116491776)*a^(29) + (458621979)/(78279122944)*a^(27) + (4884892401)/(313116491776)*a^(25) + (10385453349)/(313116491776)*a^(23) + (17393024821)/(313116491776)*a^(21) + (6115947847)/(78279122944)*a^(19) + (36342202471)/(313116491776)*a^(17) + (71922073207)/(313116491776)*a^(15) + (5506386647)/(9784890368)*a^(13) + (7867295333)/(4892445184)*a^(11) + (2535521851)/(611555648)*a^(9) + (116084461)/(13898992)*a^(7) + (4105745177)/(305777824)*a^(5) + (13475301)/(868687)*a^(3) + (95650719)/(9555557)*a + 1 , (1075157)/(741982208)*a^(30) + (8114457)/(741982208)*a^(28) + (7459957)/(185495552)*a^(26) + (76548851)/(741982208)*a^(24) + (156059263)/(741982208)*a^(22) + (250479727)/(741982208)*a^(20) + (7802323)/(16863232)*a^(18) + (550196117)/(741982208)*a^(16) + (1102043477)/(741982208)*a^(14) + (174924327)/(46373888)*a^(12) + (127035983)/(11593472)*a^(10) + (39146601)/(1449184)*a^(8) + (76081683)/(1449184)*a^(6) + (58733595)/(724592)*a^(4) + (3905370)/(45287)*a^(2) + (2034841)/(45287) , (79647507)/(313116491776)*a^(31) + (427707487)/(313116491776)*a^(29) + (1687237)/(437313536)*a^(27) + (2663654245)/(313116491776)*a^(25) + (4915310985)/(313116491776)*a^(23) + (6575790105)/(313116491776)*a^(21) + (2144024123)/(78279122944)*a^(19) + (17877918163)/(313116491776)*a^(17) + (36293476803)/(313116491776)*a^(15) + (862412769)/(2446222592)*a^(13) + (2557656597)/(2446222592)*a^(11) + (10937792585)/(4892445184)*a^(9) + (2310110339)/(611555648)*a^(7) + (757892617)/(152888912)*a^(5) + (220039999)/(76444456)*a^(3) - (12679061)/(9555557)*a , (28036407)/(156558245888)*a^(31) + (209152941)/(156558245888)*a^(30) + (104169357)/(156558245888)*a^(29) + (1608630625)/(156558245888)*a^(28) + (99357151)/(78279122944)*a^(27) + (1534443921)/(39139561472)*a^(26) + (235922041)/(156558245888)*a^(25) + (89501945)/(874627072)*a^(24) + (67449291)/(156558245888)*a^(23) + (32973332407)/(156558245888)*a^(22) - (758816061)/(156558245888)*a^(21) + (54008903911)/(156558245888)*a^(20) - (549971315)/(78279122944)*a^(19) + (18731154549)/(39139561472)*a^(18) + (469977359)/(156558245888)*a^(17) + (116331051949)/(156558245888)*a^(16) + (1530596385)/(156558245888)*a^(15) + (232454921725)/(156558245888)*a^(14) + (8237765781)/(78279122944)*a^(13) + (824393081)/(222383872)*a^(12) + (3033090037)/(9784890368)*a^(11) + (26113314187)/(2446222592)*a^(10) + (446732389)/(1223111296)*a^(9) + (65547939111)/(2446222592)*a^(8) - (560043)/(4834432)*a^(7) + (32388604315)/(611555648)*a^(6) - (382329631)/(305777824)*a^(5) + (12676031871)/(152888912)*a^(4) - (7680815)/(1737374)*a^(3) + (3511031845)/(38222228)*a^(2) - (46801685)/(9555557)*a + (488397832)/(9555557) , (50790841)/(313116491776)*a^(31) - (18543319)/(156558245888)*a^(30) + (298115517)/(313116491776)*a^(29) - (209304259)/(156558245888)*a^(28) + (213554205)/(78279122944)*a^(27) - (227958163)/(39139561472)*a^(26) + (1840841935)/(313116491776)*a^(25) - (2484623729)/(156558245888)*a^(24) + (3564207547)/(313116491776)*a^(23) - (5156047173)/(156558245888)*a^(22) + (4849721163)/(313116491776)*a^(21) - (9012721125)/(156558245888)*a^(20) + (128231363)/(7116283904)*a^(19) - (3048849967)/(39139561472)*a^(18) + (13081247193)/(313116491776)*a^(17) - (17620883815)/(156558245888)*a^(16) + (28158471721)/(313116491776)*a^(15) - (35964089879)/(156558245888)*a^(14) + (603009707)/(2446222592)*a^(13) - (1307631681)/(2446222592)*a^(12) + (7211052341)/(9784890368)*a^(11) - (15369826315)/(9784890368)*a^(10) + (1909973277)/(1223111296)*a^(9) - (10244816341)/(2446222592)*a^(8) + (1558109801)/(611555648)*a^(7) - (227255671)/(26589376)*a^(6) + (266311229)/(76444456)*a^(5) - (1041323663)/(76444456)*a^(4) + (45515575)/(19111114)*a^(3) - (625194767)/(38222228)*a^(2) - (5026207)/(9555557)*a - (87877479)/(9555557) , (22851)/(67452928)*a^(31) + (50961)/(67452928)*a^(30) + (132669)/(67452928)*a^(29) + (429717)/(67452928)*a^(28) + (200689)/(33726464)*a^(27) + (422917)/(16863232)*a^(26) + (896653)/(67452928)*a^(25) + (4503639)/(67452928)*a^(24) + (1629083)/(67452928)*a^(23) + (9366691)/(67452928)*a^(22) + (2294419)/(67452928)*a^(21) + (15509139)/(67452928)*a^(20) + (1497723)/(33726464)*a^(19) + (5373225)/(16863232)*a^(18) + (5732411)/(67452928)*a^(17) + (32844049)/(67452928)*a^(16) + (12366369)/(67452928)*a^(15) + (65214625)/(67452928)*a^(14) + (17777959)/(33726464)*a^(13) + (2504123)/(1053952)*a^(12) + (1628855)/(1053952)*a^(11) + (7239555)/(1053952)*a^(10) + (1813375)/(526976)*a^(9) + (2303885)/(131744)*a^(8) + (1563485)/(263488)*a^(7) + (9224027)/(263488)*a^(6) + (1034015)/(131744)*a^(5) + (3654607)/(65872)*a^(4) + (183137)/(32936)*a^(3) + (258402)/(4117)*a^(2) - (120)/(4117)*a + (147624)/(4117) , (9437213)/(78279122944)*a^(31) + (65003657)/(39139561472)*a^(29) + (588427713)/(78279122944)*a^(27) + (1671218135)/(78279122944)*a^(25) + (1809419303)/(39139561472)*a^(23) + (3176190393)/(39139561472)*a^(21) + (8626508255)/(78279122944)*a^(19) + (1135377499)/(7116283904)*a^(17) + (1130164949)/(3558141952)*a^(15) + (2421465503)/(3403440128)*a^(13) + (20692571807)/(9784890368)*a^(11) + (869951319)/(152888912)*a^(9) + (7263058589)/(611555648)*a^(7) + (5984271759)/(305777824)*a^(5) + (233463607)/(9555557)*a^(3) + (140018859)/(9555557)*a , (46406907)/(313116491776)*a^(31) - (69820759)/(78279122944)*a^(30) + (232227323)/(313116491776)*a^(29) - (398517131)/(78279122944)*a^(28) + (43029583)/(19569780736)*a^(27) - (289388315)/(19569780736)*a^(26) + (1592759101)/(313116491776)*a^(25) - (2601550089)/(78279122944)*a^(24) + (2929892941)/(313116491776)*a^(23) - (4727037181)/(78279122944)*a^(22) + (3902205149)/(313116491776)*a^(21) - (6241199557)/(78279122944)*a^(20) + (694411163)/(39139561472)*a^(19) - (2080280919)/(19569780736)*a^(18) + (10419850779)/(313116491776)*a^(17) - (17199913295)/(78279122944)*a^(16) + (20184564031)/(313116491776)*a^(15) - (35568309983)/(78279122944)*a^(14) + (16156595857)/(78279122944)*a^(13) - (1675677571)/(1223111296)*a^(12) + (11742202427)/(19569780736)*a^(11) - (39193049913)/(9784890368)*a^(10) + (1532757643)/(1223111296)*a^(9) - (20900472437)/(2446222592)*a^(8) + (2694611441)/(1223111296)*a^(7) - (385195581)/(26589376)*a^(6) + (943572897)/(305777824)*a^(5) - (1437637145)/(76444456)*a^(4) + (63657555)/(38222228)*a^(3) - (431492019)/(38222228)*a^(2) + (315447)/(1737374)*a + (27738331)/(9555557) , (198352525)/(313116491776)*a^(31) + (422941575)/(156558245888)*a^(30) + (1785307917)/(313116491776)*a^(29) + (2811563363)/(156558245888)*a^(28) + (19347589)/(850860032)*a^(27) + (2433105003)/(39139561472)*a^(26) + (19333725019)/(313116491776)*a^(25) + (24193082993)/(156558245888)*a^(24) + (40670133035)/(313116491776)*a^(23) + (47804043877)/(156558245888)*a^(22) + (68113657915)/(313116491776)*a^(21) + (74693052501)/(156558245888)*a^(20) + (11729675841)/(39139561472)*a^(19) + (25683550279)/(39139561472)*a^(18) + (142537732493)/(313116491776)*a^(17) + (170386272231)/(156558245888)*a^(16) + (281159871337)/(313116491776)*a^(15) + (344932988343)/(156558245888)*a^(14) + (15383036653)/(7116283904)*a^(13) + (28597021777)/(4892445184)*a^(12) + (123025970963)/(19569780736)*a^(11) + (82400421051)/(4892445184)*a^(10) + (78767862597)/(4892445184)*a^(9) + (98399570149)/(2446222592)*a^(8) + (40200714643)/(1223111296)*a^(7) + (46552379035)/(611555648)*a^(6) + (8041478955)/(152888912)*a^(5) + (17326776959)/(152888912)*a^(4) + (4635448677)/(76444456)*a^(3) + (2170060549)/(19111114)*a^(2) + (678398819)/(19111114)*a + (489647891)/(9555557) , (181727)/(212715008)*a^(31) - (269554755)/(78279122944)*a^(30) + (591524859)/(78279122944)*a^(29) - (2019134023)/(78279122944)*a^(28) + (2481775339)/(78279122944)*a^(27) - (1890862395)/(19569780736)*a^(26) + (209666621)/(2446222592)*a^(25) - (19505053741)/(78279122944)*a^(24) + (14252755837)/(78279122944)*a^(23) - (39974121377)/(78279122944)*a^(22) + (24231730893)/(78279122944)*a^(21) - (64559333369)/(78279122944)*a^(20) + (33777356973)/(78279122944)*a^(19) - (22212387567)/(19569780736)*a^(18) + (6274288997)/(9784890368)*a^(17) - (140137629451)/(78279122944)*a^(16) + (100120579483)/(78279122944)*a^(15) - (280588741995)/(78279122944)*a^(14) + (21434933741)/(7116283904)*a^(13) - (44339672301)/(4892445184)*a^(12) + (169287213969)/(19569780736)*a^(11) - (11191931489)/(425430016)*a^(10) + (110548858239)/(4892445184)*a^(9) - (160101415733)/(2446222592)*a^(8) + (1751661581)/(38222228)*a^(7) - (3559169273)/(27797984)*a^(6) + (22694172003)/(305777824)*a^(5) - (30512908461)/(152888912)*a^(4) + (3347004717)/(38222228)*a^(3) - (186683160)/(868687)*a^(2) + (510552971)/(9555557)*a - (1110778958)/(9555557) , (3858817)/(1483964416)*a^(31) - (2130369)/(741982208)*a^(30) + (23379489)/(1483964416)*a^(29) - (15097381)/(741982208)*a^(28) + (5048173)/(92747776)*a^(27) - (13510125)/(185495552)*a^(26) + (201460551)/(1483964416)*a^(25) - (136606119)/(741982208)*a^(24) + (399516023)/(1483964416)*a^(23) - (275221843)/(741982208)*a^(22) + (619615111)/(1483964416)*a^(21) - (434976195)/(741982208)*a^(20) + (111007417)/(185495552)*a^(19) - (13591795)/(16863232)*a^(18) + (1434805569)/(1483964416)*a^(17) - (979928129)/(741982208)*a^(16) + (2896691565)/(1483964416)*a^(15) - (1950653361)/(741982208)*a^(14) + (1952120195)/(370991104)*a^(13) - (158692561)/(23186944)*a^(12) + (1368580475)/(92747776)*a^(11) - (229481687)/(11593472)*a^(10) + (816803795)/(23186944)*a^(9) - (557582635)/(11593472)*a^(8) + (2213203)/(32936)*a^(7) - (133796671)/(1449184)*a^(6) + (145114627)/(1449184)*a^(5) - (51090031)/(362296)*a^(4) + (1646037)/(16468)*a^(3) - (13038547)/(90574)*a^(2) + (2472287)/(45287)*a - (3291716)/(45287) , (84101043)/(156558245888)*a^(31) - (14123503)/(39139561472)*a^(30) + (390181741)/(156558245888)*a^(29) - (24093)/(13666048)*a^(28) + (438431289)/(78279122944)*a^(27) - (177273561)/(39139561472)*a^(26) + (1585370349)/(156558245888)*a^(25) - (397462401)/(39139561472)*a^(24) + (2046761323)/(156558245888)*a^(23) - (951013)/(55595968)*a^(22) + (953234835)/(156558245888)*a^(21) - (600653)/(27332096)*a^(20) + (2913217)/(437313536)*a^(19) - (1273849463)/(39139561472)*a^(18) + (7844409563)/(156558245888)*a^(17) - (2706833999)/(39139561472)*a^(16) + (18670933393)/(156558245888)*a^(15) - (1407660953)/(9784890368)*a^(14) + (3565451533)/(7116283904)*a^(13) - (17470823849)/(39139561472)*a^(12) + (14308998701)/(9784890368)*a^(11) - (1133628379)/(889535488)*a^(10) + (6017233379)/(2446222592)*a^(9) - (6077373517)/(2446222592)*a^(8) + (1790843489)/(611555648)*a^(7) - (2556668117)/(611555648)*a^(6) + (329605999)/(305777824)*a^(5) - (356163521)/(76444456)*a^(4) - (22009183)/(3323672)*a^(3) - (36111287)/(19111114)*a^(2) - (105177441)/(9555557)*a + (10259720)/(9555557) , (73154655)/(78279122944)*a^(31) - (47659089)/(156558245888)*a^(30) + (17734289)/(3558141952)*a^(29) - (31575279)/(6806880256)*a^(28) + (1110772283)/(78279122944)*a^(27) - (418808691)/(19569780736)*a^(26) + (219138919)/(7116283904)*a^(25) - (9466532663)/(156558245888)*a^(24) + (2084270157)/(39139561472)*a^(23) - (20811252831)/(156558245888)*a^(22) + (2603922923)/(39139561472)*a^(21) - (36375781679)/(156558245888)*a^(20) + (6923506357)/(78279122944)*a^(19) - (779619241)/(2446222592)*a^(18) + (15193473619)/(78279122944)*a^(17) - (72258449297)/(156558245888)*a^(16) + (16132045517)/(39139561472)*a^(15) - (140009889285)/(156558245888)*a^(14) + (101721386323)/(78279122944)*a^(13) - (78395431485)/(39139561472)*a^(12) + (36661762631)/(9784890368)*a^(11) - (57860108957)/(9784890368)*a^(10) + (38141391187)/(4892445184)*a^(9) - (39235607615)/(2446222592)*a^(8) + (15543229825)/(1223111296)*a^(7) - (1870207469)/(55595968)*a^(6) + (2338072123)/(152888912)*a^(5) - (8585805219)/(152888912)*a^(4) + (476610325)/(76444456)*a^(3) - (60665933)/(868687)*a^(2) - (144978777)/(19111114)*a - (422487849)/(9555557) ], 2224349047480.508, [[x^2 + 1, 1], [x^2 - x - 1, 1], [x^2 - x + 1, 1], [x^2 - 15, 1], [x^2 + 5, 1], [x^2 - 3, 1], [x^2 - x + 4, 1], [x^4 - x^3 - 3*x^2 + x + 1, 1], [x^4 + 11*x^2 + 29, 1], [x^4 - 33*x^2 + 261, 1], [x^4 - x^3 + 8*x^2 - 2*x + 19, 1], [x^4 + x^2 + 4, 1], [x^4 + 3*x^2 + 1, 1], [x^4 - 5*x^2 + 25, 1], [x^4 - x^2 + 1, 1], [x^4 - 2*x^3 - 7*x^2 + 8*x + 1, 1], [x^4 - 7*x^2 + 16, 1], [x^4 - x^3 + 2*x^2 + x + 1, 1], [x^8 - x^7 + 5*x^6 - 5*x^5 + 13*x^4 - 10*x^3 + 20*x^2 - 8*x + 16, 1], [x^8 - 25*x^6 + 229*x^4 - 905*x^2 + 1289, 1], [x^8 + 75*x^6 + 2061*x^4 + 24435*x^2 + 104409, 1], [x^8 - x^7 - 20*x^6 + 19*x^5 + 135*x^4 - 115*x^3 - 338*x^2 + 217*x + 211, 1], [x^8 - 3*x^6 + 8*x^4 - 3*x^2 + 1, 1], [x^8 + 7*x^6 + 13*x^4 + 7*x^2 + 1, 1], [x^8 - 15*x^6 + 98*x^4 - 300*x^2 + 361, 1], [x^8 - 2*x^7 - 17*x^6 + 26*x^5 + 72*x^4 - 86*x^3 - 50*x^2 + 56*x - 11, 1], [x^8 + x^6 + 14*x^4 + 20*x^2 + 25, 1], [x^8 - 11*x^6 + 92*x^4 - 319*x^2 + 841, 1], [x^8 - x^7 + 4*x^6 + x^5 + 9*x^4 - x^3 + 4*x^2 + x + 1, 1], [x^16 - 7*x^14 + 36*x^12 - 77*x^10 + 119*x^8 - 77*x^6 + 36*x^4 - 7*x^2 + 1, 1], [x^16 - 9*x^14 + 41*x^12 - 125*x^10 + 285*x^8 - 500*x^6 + 656*x^4 - 576*x^2 + 256, 1], [x^16 + 41*x^14 + 708*x^12 + 6667*x^10 + 36971*x^8 + 121171*x^6 + 221124*x^4 + 189725*x^2 + 44521, 1], [x^16 - 2*x^15 - 13*x^14 + 22*x^13 + 142*x^12 - 234*x^11 - 712*x^10 + 1112*x^9 + 3934*x^8 - 5738*x^7 - 7645*x^6 + 12618*x^5 + 38614*x^4 - 39082*x^3 + 1562*x^2 + 31304*x + 130981, 1], [x^16 - 23*x^14 + 204*x^12 - 885*x^10 + 1971*x^8 - 2189*x^6 + 1148*x^4 - 227*x^2 + 1, 1], [x^16 + 25*x^14 + 396*x^12 + 3915*x^10 + 28527*x^8 + 142795*x^6 + 523844*x^4 + 1166545*x^2 + 1661521, 1], [x^16 - x^15 - 4*x^14 + 5*x^13 + 7*x^12 - 9*x^11 - 10*x^10 + 7*x^9 + 19*x^8 + 14*x^7 - 40*x^6 - 72*x^5 + 112*x^4 + 160*x^3 - 256*x^2 - 128*x + 256, 1]]]