# SageMath code for working with number field 32.0.38897685648686306961584993323026037365043690280067733586177953.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - x^31 + 2*x^30 + 60*x^29 - 53*x^28 + 99*x^27 + 1385*x^26 - 1071*x^25 + 1854*x^24 + 15802*x^23 - 10509*x^22 + 16583*x^21 + 95912*x^20 - 54402*x^19 + 75534*x^18 + 310800*x^17 - 136853*x^16 + 163941*x^15 + 541045*x^14 - 33297*x^13 + 98317*x^12 + 537573*x^11 + 431212*x^10 - 151090*x^9 + 496535*x^8 + 326343*x^7 + 132437*x^6 + 314657*x^5 + 175914*x^4 + 198989*x^3 - 20144*x^2 - 93555*x + 27583) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^32 - x^31 + 2*x^30 + 60*x^29 - 53*x^28 + 99*x^27 + 1385*x^26 - 1071*x^25 + 1854*x^24 + 15802*x^23 - 10509*x^22 + 16583*x^21 + 95912*x^20 - 54402*x^19 + 75534*x^18 + 310800*x^17 - 136853*x^16 + 163941*x^15 + 541045*x^14 - 33297*x^13 + 98317*x^12 + 537573*x^11 + 431212*x^10 - 151090*x^9 + 496535*x^8 + 326343*x^7 + 132437*x^6 + 314657*x^5 + 175914*x^4 + 198989*x^3 - 20144*x^2 - 93555*x + 27583) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]