Normalized defining polynomial
\( x^{32} - 6 x^{28} + 49 x^{24} - 248 x^{20} + 1072 x^{16} - 3968 x^{12} + 12544 x^{8} - 24576 x^{4} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(368622913612148362854567389427658855145582683488256\)\(\medspace = 2^{64}\cdot 41^{4}\cdot 1277^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $38.04$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 41, 1277$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{11} + \frac{1}{8} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{3}{16} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{3}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{8} + \frac{3}{16} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{16} - \frac{1}{16} a^{10} + \frac{3}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4}$, $\frac{1}{32} a^{17} - \frac{1}{16} a^{11} - \frac{1}{32} a^{9} + \frac{3}{16} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{18} - \frac{1}{32} a^{14} + \frac{1}{64} a^{10} - \frac{3}{16} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{128} a^{19} - \frac{1}{64} a^{15} - \frac{7}{128} a^{11} - \frac{5}{32} a^{7} - \frac{1}{2} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{256} a^{20} - \frac{1}{128} a^{16} - \frac{7}{256} a^{12} - \frac{5}{64} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{5}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{512} a^{21} + \frac{3}{256} a^{17} + \frac{9}{512} a^{13} - \frac{1}{16} a^{11} - \frac{3}{128} a^{9} + \frac{3}{16} a^{7} - \frac{11}{32} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{512} a^{22} - \frac{1}{256} a^{18} - \frac{7}{512} a^{14} + \frac{3}{128} a^{10} - \frac{1}{32} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{1024} a^{23} - \frac{1}{512} a^{19} - \frac{7}{1024} a^{15} - \frac{13}{256} a^{11} - \frac{5}{64} a^{7} - \frac{1}{2} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{2048} a^{24} - \frac{1}{1024} a^{22} + \frac{1}{1024} a^{20} - \frac{3}{512} a^{18} + \frac{17}{2048} a^{16} + \frac{23}{1024} a^{14} - \frac{1}{128} a^{12} + \frac{11}{256} a^{10} + \frac{1}{16} a^{8} - \frac{5}{64} a^{6} - \frac{1}{2} a^{5} - \frac{1}{32} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4096} a^{25} - \frac{1}{2048} a^{23} + \frac{1}{2048} a^{21} - \frac{3}{1024} a^{19} + \frac{17}{4096} a^{17} + \frac{23}{2048} a^{15} + \frac{7}{256} a^{13} + \frac{27}{512} a^{11} - \frac{17}{128} a^{7} - \frac{5}{64} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4096} a^{26} - \frac{1}{2048} a^{22} - \frac{1}{512} a^{20} - \frac{7}{4096} a^{18} - \frac{3}{256} a^{16} - \frac{13}{1024} a^{14} - \frac{9}{512} a^{12} + \frac{11}{256} a^{10} + \frac{3}{128} a^{8} - \frac{3}{32} a^{6} - \frac{5}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8192} a^{27} - \frac{1}{4096} a^{23} - \frac{1}{1024} a^{21} - \frac{7}{8192} a^{19} + \frac{5}{512} a^{17} + \frac{51}{2048} a^{15} - \frac{9}{1024} a^{13} + \frac{27}{512} a^{11} - \frac{1}{256} a^{9} + \frac{5}{64} a^{7} - \frac{5}{64} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{491520} a^{28} - \frac{11}{245760} a^{24} + \frac{401}{491520} a^{20} - \frac{1}{256} a^{19} - \frac{1}{64} a^{17} - \frac{833}{61440} a^{16} - \frac{3}{128} a^{15} - \frac{1}{32} a^{13} - \frac{949}{30720} a^{12} + \frac{7}{256} a^{11} + \frac{3}{64} a^{9} - \frac{53}{3840} a^{8} + \frac{7}{64} a^{7} + \frac{5}{16} a^{5} + \frac{953}{1920} a^{4} - \frac{5}{16} a^{3} - \frac{1}{4} a + \frac{1}{120}$, $\frac{1}{983040} a^{29} - \frac{11}{491520} a^{25} + \frac{401}{983040} a^{21} - \frac{1}{128} a^{18} - \frac{833}{122880} a^{17} + \frac{1}{64} a^{14} - \frac{949}{61440} a^{13} + \frac{7}{128} a^{10} - \frac{53}{7680} a^{9} - \frac{1}{4} a^{7} + \frac{5}{32} a^{6} + \frac{1913}{3840} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{119}{240} a - \frac{1}{2}$, $\frac{1}{3932160} a^{30} - \frac{1}{983040} a^{28} - \frac{11}{1966080} a^{26} + \frac{11}{491520} a^{24} + \frac{401}{3932160} a^{22} - \frac{401}{983040} a^{20} - \frac{1}{256} a^{19} - \frac{833}{491520} a^{18} + \frac{833}{122880} a^{16} - \frac{3}{128} a^{15} + \frac{6731}{245760} a^{14} + \frac{949}{61440} a^{12} - \frac{9}{256} a^{11} + \frac{1867}{30720} a^{10} - \frac{907}{7680} a^{8} - \frac{13}{64} a^{7} + \frac{473}{15360} a^{6} - \frac{1}{2} a^{5} + \frac{1447}{3840} a^{4} - \frac{1}{16} a^{3} - \frac{479}{960} a^{2} - \frac{1}{240}$, $\frac{1}{7864320} a^{31} - \frac{1}{1966080} a^{29} - \frac{11}{3932160} a^{27} + \frac{11}{983040} a^{25} + \frac{401}{7864320} a^{23} - \frac{401}{1966080} a^{21} - \frac{833}{983040} a^{19} + \frac{833}{245760} a^{17} + \frac{6731}{491520} a^{15} + \frac{949}{122880} a^{13} - \frac{1973}{61440} a^{11} - \frac{907}{15360} a^{9} - \frac{1}{8} a^{8} + \frac{6233}{30720} a^{7} - \frac{1}{4} a^{6} - \frac{473}{7680} a^{5} + \frac{3}{8} a^{4} - \frac{479}{1920} a^{3} + \frac{1}{4} a^{2} + \frac{239}{480} a - \frac{1}{2}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{23}{1966080} a^{31} + \frac{13}{983040} a^{27} - \frac{583}{1966080} a^{23} + \frac{379}{245760} a^{19} - \frac{1093}{122880} a^{15} + \frac{199}{15360} a^{11} - \frac{319}{7680} a^{7} + \frac{37}{480} a^{3} \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 747032345387.1615 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 1536 |
The 80 conjugacy class representatives for t32n96908 are not computed |
Character table for t32n96908 is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
$41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
1277 | Data not computed |