# SageMath code for working with number field 32.0.366225584701948244050176000000000000000000000000.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - 3*x^30 + 4*x^28 - 9*x^26 + 27*x^24 - 93*x^22 + 188*x^20 - 279*x^18 + 581*x^16 - 1116*x^14 + 3008*x^12 - 5952*x^10 + 6912*x^8 - 9216*x^6 + 16384*x^4 - 49152*x^2 + 65536) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]