Normalized defining polynomial
\( x^{32} - 3 x^{30} + 4 x^{28} - 9 x^{26} + 27 x^{24} - 93 x^{22} + 188 x^{20} - 279 x^{18} + 581 x^{16} - 1116 x^{14} + 3008 x^{12} - 5952 x^{10} + 6912 x^{8} - 9216 x^{6} + 16384 x^{4} - 49152 x^{2} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(366225584701948244050176000000000000000000000000\)\(\medspace = 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $30.65$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 7$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $32$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(391,·)$, $\chi_{420}(139,·)$, $\chi_{420}(13,·)$, $\chi_{420}(407,·)$, $\chi_{420}(281,·)$, $\chi_{420}(29,·)$, $\chi_{420}(419,·)$, $\chi_{420}(293,·)$, $\chi_{420}(167,·)$, $\chi_{420}(41,·)$, $\chi_{420}(43,·)$, $\chi_{420}(307,·)$, $\chi_{420}(181,·)$, $\chi_{420}(323,·)$, $\chi_{420}(197,·)$, $\chi_{420}(71,·)$, $\chi_{420}(209,·)$, $\chi_{420}(211,·)$, $\chi_{420}(349,·)$, $\chi_{420}(223,·)$, $\chi_{420}(97,·)$, $\chi_{420}(251,·)$, $\chi_{420}(337,·)$, $\chi_{420}(239,·)$, $\chi_{420}(113,·)$, $\chi_{420}(83,·)$, $\chi_{420}(169,·)$, $\chi_{420}(377,·)$, $\chi_{420}(379,·)$, $\chi_{420}(253,·)$, $\chi_{420}(127,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{18} + \frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} + \frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{176} a^{20} - \frac{1}{16} a^{18} + \frac{1}{4} a^{16} + \frac{5}{16} a^{14} - \frac{7}{16} a^{12} + \frac{43}{176} a^{10} - \frac{1}{4} a^{8} - \frac{5}{16} a^{6} + \frac{7}{16} a^{4} + \frac{1}{4} a^{2} - \frac{2}{11}$, $\frac{1}{352} a^{21} - \frac{1}{32} a^{19} + \frac{1}{8} a^{17} - \frac{11}{32} a^{15} + \frac{9}{32} a^{13} - \frac{133}{352} a^{11} - \frac{1}{8} a^{9} + \frac{11}{32} a^{7} - \frac{9}{32} a^{5} + \frac{1}{8} a^{3} + \frac{9}{22} a$, $\frac{1}{704} a^{22} + \frac{1}{704} a^{20} - \frac{1}{8} a^{18} + \frac{5}{64} a^{16} + \frac{5}{64} a^{14} + \frac{351}{704} a^{12} - \frac{29}{88} a^{10} + \frac{27}{64} a^{8} + \frac{27}{64} a^{6} - \frac{1}{8} a^{4} + \frac{5}{11} a^{2} + \frac{5}{11}$, $\frac{1}{1408} a^{23} + \frac{1}{1408} a^{21} - \frac{1}{16} a^{19} + \frac{5}{128} a^{17} - \frac{59}{128} a^{15} + \frac{351}{1408} a^{13} - \frac{29}{176} a^{11} + \frac{27}{128} a^{9} - \frac{37}{128} a^{7} + \frac{7}{16} a^{5} - \frac{3}{11} a^{3} + \frac{5}{22} a$, $\frac{1}{14080} a^{24} + \frac{1}{2816} a^{22} - \frac{1}{704} a^{20} - \frac{27}{1280} a^{18} - \frac{123}{256} a^{16} - \frac{1153}{2816} a^{14} - \frac{59}{3520} a^{12} + \frac{565}{2816} a^{10} + \frac{27}{256} a^{8} - \frac{7}{320} a^{6} - \frac{31}{88} a^{4} - \frac{3}{22} a^{2} - \frac{14}{55}$, $\frac{1}{28160} a^{25} + \frac{1}{5632} a^{23} - \frac{1}{1408} a^{21} - \frac{27}{2560} a^{19} - \frac{123}{512} a^{17} - \frac{1153}{5632} a^{15} - \frac{59}{7040} a^{13} + \frac{565}{5632} a^{11} + \frac{27}{512} a^{9} - \frac{7}{640} a^{7} + \frac{57}{176} a^{5} - \frac{3}{44} a^{3} - \frac{7}{55} a$, $\frac{1}{25062400} a^{26} + \frac{193}{25062400} a^{24} - \frac{237}{626560} a^{22} + \frac{27463}{25062400} a^{20} + \frac{48389}{2278400} a^{18} + \frac{1266179}{5012480} a^{16} + \frac{767593}{3132800} a^{14} - \frac{1794663}{25062400} a^{12} - \frac{1911467}{5012480} a^{10} + \frac{141669}{284800} a^{8} + \frac{411321}{1566400} a^{6} - \frac{20597}{78320} a^{4} - \frac{8869}{97900} a^{2} + \frac{11667}{24475}$, $\frac{1}{50124800} a^{27} + \frac{193}{50124800} a^{25} - \frac{237}{1253120} a^{23} + \frac{27463}{50124800} a^{21} + \frac{48389}{4556800} a^{19} + \frac{1266179}{10024960} a^{17} + \frac{767593}{6265600} a^{15} - \frac{1794663}{50124800} a^{13} - \frac{1911467}{10024960} a^{11} + \frac{141669}{569600} a^{9} + \frac{411321}{3132800} a^{7} - \frac{20597}{156640} a^{5} - \frac{8869}{195800} a^{3} + \frac{11667}{48950} a$, $\frac{1}{100249600} a^{28} + \frac{1}{100249600} a^{26} + \frac{413}{12531200} a^{24} - \frac{39177}{100249600} a^{22} + \frac{100983}{100249600} a^{20} - \frac{10419553}{100249600} a^{18} - \frac{13933}{140800} a^{16} + \frac{5837289}{100249600} a^{14} + \frac{12111721}{100249600} a^{12} + \frac{2466949}{12531200} a^{10} - \frac{628117}{1566400} a^{8} + \frac{741977}{1566400} a^{6} - \frac{143039}{391600} a^{4} + \frac{19079}{97900} a^{2} - \frac{651}{24475}$, $\frac{1}{200499200} a^{29} + \frac{1}{200499200} a^{27} + \frac{413}{25062400} a^{25} - \frac{39177}{200499200} a^{23} + \frac{100983}{200499200} a^{21} - \frac{10419553}{200499200} a^{19} - \frac{13933}{281600} a^{17} - \frac{94412311}{200499200} a^{15} - \frac{88137879}{200499200} a^{13} + \frac{2466949}{25062400} a^{11} - \frac{628117}{3132800} a^{9} - \frac{824423}{3132800} a^{7} + \frac{248561}{783200} a^{5} - \frac{78821}{195800} a^{3} - \frac{651}{48950} a$, $\frac{1}{400998400} a^{30} + \frac{1}{400998400} a^{28} - \frac{1}{50124800} a^{26} + \frac{5127}{400998400} a^{24} + \frac{170743}{400998400} a^{22} + \frac{581391}{400998400} a^{20} + \frac{3644777}{50124800} a^{18} - \frac{128966951}{400998400} a^{16} - \frac{162762007}{400998400} a^{14} + \frac{9092791}{50124800} a^{12} + \frac{9525477}{25062400} a^{10} - \frac{1900949}{6265600} a^{8} + \frac{655029}{1566400} a^{6} + \frac{55237}{195800} a^{4} - \frac{6217}{24475} a^{2} + \frac{11961}{24475}$, $\frac{1}{801996800} a^{31} + \frac{1}{801996800} a^{29} - \frac{1}{100249600} a^{27} + \frac{5127}{801996800} a^{25} + \frac{170743}{801996800} a^{23} + \frac{581391}{801996800} a^{21} + \frac{3644777}{100249600} a^{19} - \frac{128966951}{801996800} a^{17} - \frac{162762007}{801996800} a^{15} - \frac{41032009}{100249600} a^{13} + \frac{9525477}{50124800} a^{11} - \frac{1900949}{12531200} a^{9} - \frac{911371}{3132800} a^{7} - \frac{140563}{391600} a^{5} + \frac{9129}{24475} a^{3} + \frac{11961}{48950} a$
Class group and class number
not computed
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{1}{48950} a^{31} - \frac{7193}{48950} a \) (order $60$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^3\times C_4$ (as 32T34):
An abelian group of order 32 |
The 32 conjugacy class representatives for $C_2^3\times C_4$ |
Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
$7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |