Normalized defining polynomial
\( x^{32} + 2 x^{30} - 56 x^{28} - 824 x^{26} + 992 x^{24} + 23552 x^{22} + 121088 x^{20} + 560896 x^{18} + 1820416 x^{16} + 2243584 x^{14} + 1937408 x^{12} + 1507328 x^{10} + 253952 x^{8} - 843776 x^{6} - 229376 x^{4} + 32768 x^{2} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(361280028614042283247927296000000000000000000000000\)\(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{24}\cdot 29^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $38.01$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{768} a^{16} - \frac{1}{384} a^{14} + \frac{1}{96} a^{10} - \frac{1}{48} a^{8} + \frac{1}{24} a^{6} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{768} a^{17} - \frac{1}{384} a^{15} + \frac{1}{96} a^{11} - \frac{1}{48} a^{9} + \frac{1}{24} a^{7} - \frac{1}{6} a^{3} + \frac{1}{3} a$, $\frac{1}{1536} a^{18} - \frac{1}{384} a^{14} + \frac{1}{192} a^{12} + \frac{1}{24} a^{6} - \frac{1}{12} a^{4} + \frac{1}{3}$, $\frac{1}{1536} a^{19} - \frac{1}{384} a^{15} + \frac{1}{192} a^{13} + \frac{1}{24} a^{7} - \frac{1}{12} a^{5} + \frac{1}{3} a$, $\frac{1}{12288} a^{20} - \frac{5}{384} a^{10} + \frac{1}{12}$, $\frac{1}{12288} a^{21} - \frac{5}{384} a^{11} + \frac{1}{12} a$, $\frac{1}{24576} a^{22} - \frac{5}{768} a^{12} + \frac{1}{24} a^{2}$, $\frac{1}{24576} a^{23} - \frac{5}{768} a^{13} + \frac{1}{24} a^{3}$, $\frac{1}{5898240} a^{24} + \frac{1}{196608} a^{22} + \frac{1}{32768} a^{20} - \frac{41}{184320} a^{18} + \frac{1}{6144} a^{16} - \frac{11}{12288} a^{14} - \frac{419}{92160} a^{12} - \frac{35}{3072} a^{10} - \frac{7}{384} a^{8} - \frac{161}{2880} a^{6} + \frac{11}{384} a^{4} + \frac{11}{64} a^{2} - \frac{599}{1440}$, $\frac{1}{5898240} a^{25} + \frac{1}{196608} a^{23} + \frac{1}{32768} a^{21} - \frac{41}{184320} a^{19} + \frac{1}{6144} a^{17} - \frac{11}{12288} a^{15} - \frac{419}{92160} a^{13} - \frac{35}{3072} a^{11} - \frac{7}{384} a^{9} - \frac{161}{2880} a^{7} + \frac{11}{384} a^{5} + \frac{11}{64} a^{3} - \frac{599}{1440} a$, $\frac{1}{342097920} a^{26} - \frac{1}{28508160} a^{24} + \frac{35}{2850816} a^{22} - \frac{389}{42762240} a^{20} + \frac{21}{148480} a^{18} - \frac{53}{237568} a^{16} - \frac{3517}{2672640} a^{14} - \frac{761}{445440} a^{12} - \frac{653}{89088} a^{10} + \frac{391}{41760} a^{8} + \frac{881}{37120} a^{6} - \frac{35}{5568} a^{4} - \frac{5797}{41760} a^{2} + \frac{2513}{13920}$, $\frac{1}{342097920} a^{27} - \frac{1}{28508160} a^{25} + \frac{35}{2850816} a^{23} - \frac{389}{42762240} a^{21} + \frac{21}{148480} a^{19} - \frac{53}{237568} a^{17} - \frac{3517}{2672640} a^{15} - \frac{761}{445440} a^{13} - \frac{653}{89088} a^{11} + \frac{391}{41760} a^{9} + \frac{881}{37120} a^{7} - \frac{35}{5568} a^{5} - \frac{5797}{41760} a^{3} + \frac{2513}{13920} a$, $\frac{1}{3067934146560} a^{28} + \frac{61}{51132235776} a^{26} + \frac{21589}{255661178880} a^{24} - \frac{2103697}{191745884160} a^{22} + \frac{29465}{4261019648} a^{20} + \frac{4520329}{31957647360} a^{18} + \frac{13057283}{23968235520} a^{16} + \frac{1966453}{532627456} a^{14} + \frac{1974939}{665784320} a^{12} + \frac{79457851}{5992058880} a^{10} + \frac{1500217}{66578432} a^{8} - \frac{10249163}{249669120} a^{6} + \frac{70804351}{749007360} a^{4} - \frac{233107}{12483456} a^{2} + \frac{6014539}{62417280}$, $\frac{1}{3067934146560} a^{29} + \frac{61}{51132235776} a^{27} + \frac{21589}{255661178880} a^{25} - \frac{2103697}{191745884160} a^{23} + \frac{29465}{4261019648} a^{21} + \frac{4520329}{31957647360} a^{19} + \frac{13057283}{23968235520} a^{17} + \frac{1966453}{532627456} a^{15} + \frac{1974939}{665784320} a^{13} + \frac{79457851}{5992058880} a^{11} + \frac{1500217}{66578432} a^{9} - \frac{10249163}{249669120} a^{7} + \frac{70804351}{749007360} a^{5} - \frac{233107}{12483456} a^{3} + \frac{6014539}{62417280} a$, $\frac{1}{951059585433600} a^{30} + \frac{1}{7669835366400} a^{28} + \frac{10907}{26418321817600} a^{26} + \frac{289063}{11888244817920} a^{24} + \frac{834797477}{59441224089600} a^{22} + \frac{3838369}{341616230400} a^{20} + \frac{78744139}{1486030602240} a^{18} - \frac{3148591843}{7430153011200} a^{16} - \frac{131615707}{619179417600} a^{14} + \frac{2496327887}{371507650560} a^{12} - \frac{4970558263}{928769126400} a^{10} - \frac{9887309}{25799142400} a^{8} - \frac{996093481}{46438456320} a^{6} + \frac{4077201151}{58048070400} a^{4} + \frac{31126021}{624172800} a^{2} - \frac{1088448923}{2418669600}$, $\frac{1}{951059585433600} a^{31} + \frac{1}{7669835366400} a^{29} + \frac{10907}{26418321817600} a^{27} + \frac{289063}{11888244817920} a^{25} + \frac{834797477}{59441224089600} a^{23} + \frac{3838369}{341616230400} a^{21} + \frac{78744139}{1486030602240} a^{19} - \frac{3148591843}{7430153011200} a^{17} - \frac{131615707}{619179417600} a^{15} + \frac{2496327887}{371507650560} a^{13} - \frac{4970558263}{928769126400} a^{11} - \frac{9887309}{25799142400} a^{9} - \frac{996093481}{46438456320} a^{7} + \frac{4077201151}{58048070400} a^{5} + \frac{31126021}{624172800} a^{3} - \frac{1088448923}{2418669600} a$
Class group and class number
not computed
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{703968131}{475529792716800} a^{30} - \frac{2058181}{807351091200} a^{28} + \frac{2449937513}{29720612044800} a^{26} + \frac{28367837293}{23776489635840} a^{24} - \frac{25802783791}{14860306022400} a^{22} - \frac{52135855529}{1564242739200} a^{20} - \frac{505243473911}{2972061204480} a^{18} - \frac{1509983544481}{1857538252800} a^{16} - \frac{9825907907561}{3715076505600} a^{14} - \frac{158224176703}{46438456320} a^{12} - \frac{4465453693909}{928769126400} a^{10} - \frac{2713845539621}{464384563200} a^{8} - \frac{9376358513}{2902403520} a^{6} - \frac{199396520239}{116096140800} a^{4} - \frac{536714549}{468129600} a^{2} + \frac{6195366329}{9674678400} \) (order $30$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times C_2^2:C_4$ (as 32T262):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2^2\times C_2^2:C_4$ |
Character table for $C_2^2\times C_2^2:C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
$29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |