Properties

Label 32.0.351...304.1
Degree $32$
Signature $[0, 16]$
Discriminant $3.519\times 10^{46}$
Root discriminant $28.48$
Ramified primes $2, 17$
Class number $8$ (GRH)
Class group $[8]$ (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - x^30 + x^28 - x^26 + x^24 - x^22 + x^20 - x^18 + x^16 - x^14 + x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1)
 
gp: K = bnfinit(x^32 - x^30 + x^28 - x^26 + x^24 - x^22 + x^20 - x^18 + x^16 - x^14 + x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1]);
 

\( x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(35190667333271321019306672876612934335729762304\)\(\medspace = 2^{32}\cdot 17^{30}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $28.48$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $2, 17$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Gal(K/\Q)|$:  $32$
This field is Galois and abelian over $\Q$.
Conductor:  \(68=2^{2}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{68}(1,·)$, $\chi_{68}(3,·)$, $\chi_{68}(5,·)$, $\chi_{68}(7,·)$, $\chi_{68}(9,·)$, $\chi_{68}(11,·)$, $\chi_{68}(13,·)$, $\chi_{68}(15,·)$, $\chi_{68}(19,·)$, $\chi_{68}(21,·)$, $\chi_{68}(23,·)$, $\chi_{68}(25,·)$, $\chi_{68}(27,·)$, $\chi_{68}(29,·)$, $\chi_{68}(31,·)$, $\chi_{68}(33,·)$, $\chi_{68}(35,·)$, $\chi_{68}(37,·)$, $\chi_{68}(39,·)$, $\chi_{68}(41,·)$, $\chi_{68}(43,·)$, $\chi_{68}(45,·)$, $\chi_{68}(47,·)$, $\chi_{68}(49,·)$, $\chi_{68}(53,·)$, $\chi_{68}(55,·)$, $\chi_{68}(57,·)$, $\chi_{68}(59,·)$, $\chi_{68}(61,·)$, $\chi_{68}(63,·)$, $\chi_{68}(65,·)$, $\chi_{68}(67,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

$C_{8}$, which has order $8$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( a \) (order $68$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( a^{19} - a^{17} \),  \( a^{4} + 1 \),  \( a^{17} + a \),  \( a^{8} + a^{4} + 1 \),  \( a^{31} + a^{27} + a^{23} - a^{21} + a^{19} - a^{17} + a^{15} - a^{13} - a^{9} - a^{5} - a \),  \( a^{11} - a^{9} + a^{7} \),  \( a^{21} + a^{17} + a^{13} + a^{9} + a^{5} \),  \( a - 1 \),  \( a^{3} - 1 \),  \( a^{9} - 1 \),  \( a^{7} - 1 \),  \( a^{11} - 1 \),  \( a^{13} - 1 \),  \( a^{5} - 1 \),  \( a^{15} - 1 \) (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 36938367173.77557 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{16}\cdot 36938367173.77557 \cdot 8}{68\sqrt{35190667333271321019306672876612934335729762304}}\approx 0.136685646313966$ (assuming GRH)

Galois group

$C_2\times C_{16}$ (as 32T32):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-17}) \), \(\Q(i, \sqrt{17})\), 4.4.4913.1, 4.0.78608.1, 8.0.6179217664.1, \(\Q(\zeta_{17})^+\), 8.0.105046700288.1, 16.0.11034809241396899282944.1, \(\Q(\zeta_{17})\), \(\Q(\zeta_{68})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
17Data not computed