Normalized defining polynomial
\( x^{32} - 30 x^{30} + 536 x^{28} - 6344 x^{26} + 55936 x^{24} - 372416 x^{22} + 1935424 x^{20} - 7766016 x^{18} + 24284672 x^{16} - 57272832 x^{14} + 101765120 x^{12} - 126291968 x^{10} + 110481408 x^{8} - 54362112 x^{6} + 17793024 x^{4} - 1179648 x^{2} + 65536 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(343518132400968646195554032900431766403471261479800406016=2^{48}\cdot 3^{16}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(408=2^{3}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{408}(1,·)$, $\chi_{408}(259,·)$, $\chi_{408}(257,·)$, $\chi_{408}(137,·)$, $\chi_{408}(395,·)$, $\chi_{408}(145,·)$, $\chi_{408}(19,·)$, $\chi_{408}(25,·)$, $\chi_{408}(281,·)$, $\chi_{408}(155,·)$, $\chi_{408}(161,·)$, $\chi_{408}(35,·)$, $\chi_{408}(49,·)$, $\chi_{408}(169,·)$, $\chi_{408}(43,·)$, $\chi_{408}(307,·)$, $\chi_{408}(305,·)$, $\chi_{408}(179,·)$, $\chi_{408}(185,·)$, $\chi_{408}(59,·)$, $\chi_{408}(67,·)$, $\chi_{408}(331,·)$, $\chi_{408}(83,·)$, $\chi_{408}(203,·)$, $\chi_{408}(89,·)$, $\chi_{408}(353,·)$, $\chi_{408}(355,·)$, $\chi_{408}(361,·)$, $\chi_{408}(115,·)$, $\chi_{408}(121,·)$, $\chi_{408}(217,·)$, $\chi_{408}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{16384} a^{24} - \frac{1}{2048} a^{18} + \frac{1}{256} a^{12} - \frac{1}{32} a^{6} + \frac{1}{4}$, $\frac{1}{16384} a^{25} - \frac{1}{2048} a^{19} + \frac{1}{256} a^{13} - \frac{1}{32} a^{7} + \frac{1}{4} a$, $\frac{1}{32768} a^{26} - \frac{1}{4096} a^{20} + \frac{1}{512} a^{14} - \frac{1}{64} a^{8} + \frac{1}{8} a^{2}$, $\frac{1}{32768} a^{27} - \frac{1}{4096} a^{21} + \frac{1}{512} a^{15} - \frac{1}{64} a^{9} + \frac{1}{8} a^{3}$, $\frac{1}{5879431168} a^{28} + \frac{3023}{226131968} a^{26} + \frac{7889}{367464448} a^{24} + \frac{3975}{734928896} a^{22} + \frac{84017}{367464448} a^{20} + \frac{4629}{11483264} a^{18} - \frac{132151}{91866112} a^{16} + \frac{62195}{45933056} a^{14} + \frac{33355}{5741632} a^{12} - \frac{114209}{11483264} a^{10} - \frac{47527}{5741632} a^{8} + \frac{30317}{717704} a^{6} - \frac{138651}{1435408} a^{4} - \frac{130001}{717704} a^{2} - \frac{34733}{89713}$, $\frac{1}{5879431168} a^{29} + \frac{3023}{226131968} a^{27} + \frac{7889}{367464448} a^{25} + \frac{3975}{734928896} a^{23} + \frac{84017}{367464448} a^{21} + \frac{4629}{11483264} a^{19} - \frac{132151}{91866112} a^{17} + \frac{62195}{45933056} a^{15} + \frac{33355}{5741632} a^{13} - \frac{114209}{11483264} a^{11} - \frac{47527}{5741632} a^{9} + \frac{30317}{717704} a^{7} - \frac{138651}{1435408} a^{5} - \frac{130001}{717704} a^{3} - \frac{34733}{89713} a$, $\frac{1}{575751097677376707493888} a^{30} + \frac{7900196601225}{143937774419344176873472} a^{28} - \frac{999041555612202613}{71968887209672088436736} a^{26} - \frac{1338024522544717873}{71968887209672088436736} a^{24} + \frac{3835392211117073523}{17992221802418022109184} a^{22} + \frac{3694594152601151133}{8996110901209011054592} a^{20} + \frac{4996032877804513497}{8996110901209011054592} a^{18} - \frac{147626888757663837}{2249027725302252763648} a^{16} - \frac{3820195192929595923}{1124513862651126381824} a^{14} + \frac{4830698173074491843}{1124513862651126381824} a^{12} + \frac{1838877410860332189}{281128465662781595456} a^{10} + \frac{1778620435172716663}{140564232831390797728} a^{8} + \frac{3463142646295211545}{140564232831390797728} a^{6} - \frac{3220148525250131219}{35141058207847699432} a^{4} + \frac{178917159753353623}{1351579161840296132} a^{2} + \frac{889741426692540796}{4392632275980962429}$, $\frac{1}{575751097677376707493888} a^{31} + \frac{7900196601225}{143937774419344176873472} a^{29} - \frac{999041555612202613}{71968887209672088436736} a^{27} - \frac{1338024522544717873}{71968887209672088436736} a^{25} + \frac{3835392211117073523}{17992221802418022109184} a^{23} + \frac{3694594152601151133}{8996110901209011054592} a^{21} + \frac{4996032877804513497}{8996110901209011054592} a^{19} - \frac{147626888757663837}{2249027725302252763648} a^{17} - \frac{3820195192929595923}{1124513862651126381824} a^{15} + \frac{4830698173074491843}{1124513862651126381824} a^{13} + \frac{1838877410860332189}{281128465662781595456} a^{11} + \frac{1778620435172716663}{140564232831390797728} a^{9} + \frac{3463142646295211545}{140564232831390797728} a^{7} - \frac{3220148525250131219}{35141058207847699432} a^{5} + \frac{178917159753353623}{1351579161840296132} a^{3} + \frac{889741426692540796}{4392632275980962429} a$
Class group and class number
$C_{3}\times C_{120}$, which has order $360$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{666255728058537507}{575751097677376707493888} a^{30} + \frac{9958026200414712059}{287875548838688353746944} a^{28} - \frac{44375142701574773463}{71968887209672088436736} a^{26} + \frac{523676182392255393901}{71968887209672088436736} a^{24} - \frac{2302009833061492251667}{35984443604836044218368} a^{22} + \frac{3817758492490219804039}{8996110901209011054592} a^{20} - \frac{19760992010027759365005}{8996110901209011054592} a^{18} + \frac{3033538926927053056667}{346004265431115809792} a^{16} - \frac{457256879154747983161}{16783788994792931072} a^{14} + \frac{71601600844042490490521}{1124513862651126381824} a^{12} - \frac{62914914062269543384987}{562256931325563190912} a^{10} + \frac{19158178071443160895945}{140564232831390797728} a^{8} - \frac{16424218762316464539945}{140564232831390797728} a^{6} + \frac{3823365820404516748143}{70282116415695398864} a^{4} - \frac{322367663821497420007}{17570529103923849716} a^{2} + \frac{10679250748987617087}{8785264551961924858} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12886153151831.549 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||