Normalized defining polynomial
\( x^{32} - 12 x^{31} + 102 x^{30} - 632 x^{29} + 3259 x^{28} - 14196 x^{27} + 54054 x^{26} - 181168 x^{25} + \cdots + 256 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(323436686508763086889139574016939351080960000000000000000\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{16}\cdot 29^{8}\cdot 769^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(58.34\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{1/2}29^{1/2}769^{1/2}\approx 1635.8850815384312$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(29\), \(769\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}$, $\frac{1}{8}a^{20}-\frac{1}{8}a^{16}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}+\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{3}{8}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{21}-\frac{1}{8}a^{17}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}+\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{3}{8}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{16}a^{22}+\frac{3}{16}a^{18}-\frac{1}{4}a^{16}+\frac{1}{8}a^{14}-\frac{1}{4}a^{13}+\frac{1}{8}a^{12}-\frac{1}{4}a^{11}-\frac{1}{8}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{7}+\frac{1}{16}a^{6}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}+\frac{1}{4}a^{2}$, $\frac{1}{16}a^{23}+\frac{3}{16}a^{19}-\frac{1}{4}a^{17}+\frac{1}{8}a^{15}-\frac{1}{4}a^{14}+\frac{1}{8}a^{13}-\frac{1}{4}a^{12}-\frac{1}{8}a^{11}-\frac{1}{4}a^{10}+\frac{1}{4}a^{8}+\frac{1}{16}a^{7}-\frac{1}{4}a^{6}+\frac{1}{8}a^{5}+\frac{1}{4}a^{3}$, $\frac{1}{64}a^{24}-\frac{1}{32}a^{22}-\frac{1}{64}a^{20}-\frac{5}{32}a^{18}+\frac{1}{8}a^{17}+\frac{7}{32}a^{16}+\frac{3}{16}a^{15}-\frac{1}{32}a^{14}+\frac{1}{16}a^{13}+\frac{1}{32}a^{12}+\frac{3}{16}a^{11}+\frac{3}{16}a^{10}+\frac{5}{16}a^{9}+\frac{25}{64}a^{8}-\frac{5}{16}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{1}{16}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{64}a^{25}-\frac{1}{32}a^{23}-\frac{1}{64}a^{21}-\frac{5}{32}a^{19}+\frac{1}{8}a^{18}+\frac{7}{32}a^{17}+\frac{3}{16}a^{16}-\frac{1}{32}a^{15}+\frac{1}{16}a^{14}+\frac{1}{32}a^{13}+\frac{3}{16}a^{12}+\frac{3}{16}a^{11}-\frac{3}{16}a^{10}+\frac{25}{64}a^{9}+\frac{3}{16}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}-\frac{1}{16}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a$, $\frac{1}{128}a^{26}+\frac{3}{128}a^{22}+\frac{1}{32}a^{20}-\frac{3}{16}a^{19}+\frac{9}{64}a^{18}-\frac{1}{32}a^{17}+\frac{5}{64}a^{16}+\frac{7}{32}a^{15}+\frac{7}{64}a^{14}+\frac{5}{32}a^{13}-\frac{1}{4}a^{12}+\frac{3}{32}a^{11}+\frac{1}{128}a^{10}+\frac{13}{32}a^{9}+\frac{9}{64}a^{8}+\frac{1}{16}a^{7}-\frac{7}{32}a^{6}+\frac{1}{16}a^{4}-\frac{1}{4}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{128}a^{27}+\frac{3}{128}a^{23}+\frac{1}{32}a^{21}-\frac{1}{16}a^{20}+\frac{9}{64}a^{19}-\frac{1}{32}a^{18}+\frac{5}{64}a^{17}+\frac{3}{32}a^{16}+\frac{7}{64}a^{15}+\frac{5}{32}a^{14}-\frac{1}{4}a^{13}-\frac{5}{32}a^{12}+\frac{1}{128}a^{11}+\frac{5}{32}a^{10}+\frac{9}{64}a^{9}+\frac{5}{16}a^{8}+\frac{9}{32}a^{7}-\frac{7}{16}a^{5}+\frac{3}{8}a^{4}-\frac{3}{8}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{512}a^{28}-\frac{1}{512}a^{24}+\frac{3}{128}a^{22}-\frac{3}{64}a^{21}-\frac{5}{256}a^{20}-\frac{1}{128}a^{19}-\frac{7}{256}a^{18}-\frac{1}{128}a^{17}-\frac{5}{256}a^{16}-\frac{7}{128}a^{15}-\frac{11}{64}a^{14}+\frac{15}{128}a^{13}-\frac{71}{512}a^{12}-\frac{15}{128}a^{11}+\frac{49}{256}a^{10}+\frac{23}{64}a^{9}-\frac{1}{2}a^{8}-\frac{11}{32}a^{7}+\frac{1}{64}a^{6}+\frac{3}{16}a^{5}-\frac{3}{8}a^{4}-\frac{3}{8}a^{3}+\frac{5}{16}a^{2}+\frac{1}{4}a+\frac{3}{8}$, $\frac{1}{6656}a^{29}-\frac{5}{6656}a^{28}+\frac{1}{1664}a^{27}+\frac{5}{1664}a^{26}-\frac{49}{6656}a^{25}-\frac{3}{6656}a^{24}+\frac{15}{832}a^{23}-\frac{9}{832}a^{22}+\frac{87}{3328}a^{21}+\frac{147}{3328}a^{20}-\frac{601}{3328}a^{19}+\frac{341}{3328}a^{18}-\frac{383}{3328}a^{17}+\frac{591}{3328}a^{16}-\frac{409}{1664}a^{15}-\frac{373}{1664}a^{14}+\frac{29}{6656}a^{13}-\frac{249}{6656}a^{12}-\frac{15}{3328}a^{11}-\frac{631}{3328}a^{10}-\frac{153}{416}a^{9}-\frac{163}{416}a^{8}-\frac{151}{832}a^{7}+\frac{281}{832}a^{6}-\frac{37}{104}a^{5}-\frac{33}{104}a^{4}-\frac{23}{208}a^{3}+\frac{33}{208}a^{2}-\frac{17}{104}a-\frac{3}{104}$, $\frac{1}{59\!\cdots\!24}a^{30}+\frac{99\!\cdots\!27}{14\!\cdots\!56}a^{29}+\frac{35\!\cdots\!03}{14\!\cdots\!56}a^{28}+\frac{49\!\cdots\!65}{14\!\cdots\!64}a^{27}+\frac{14\!\cdots\!07}{59\!\cdots\!24}a^{26}+\frac{10\!\cdots\!93}{14\!\cdots\!56}a^{25}-\frac{16\!\cdots\!41}{36\!\cdots\!64}a^{24}-\frac{16\!\cdots\!09}{73\!\cdots\!28}a^{23}-\frac{47\!\cdots\!49}{29\!\cdots\!12}a^{22}+\frac{75\!\cdots\!67}{13\!\cdots\!96}a^{21}-\frac{14\!\cdots\!59}{29\!\cdots\!12}a^{20}-\frac{33\!\cdots\!03}{14\!\cdots\!56}a^{19}+\frac{47\!\cdots\!91}{29\!\cdots\!12}a^{18}-\frac{21\!\cdots\!97}{14\!\cdots\!56}a^{17}-\frac{81\!\cdots\!21}{36\!\cdots\!64}a^{16}-\frac{25\!\cdots\!41}{14\!\cdots\!56}a^{15}+\frac{10\!\cdots\!21}{59\!\cdots\!24}a^{14}-\frac{20\!\cdots\!63}{92\!\cdots\!16}a^{13}+\frac{82\!\cdots\!91}{29\!\cdots\!12}a^{12}+\frac{13\!\cdots\!69}{92\!\cdots\!16}a^{11}-\frac{54\!\cdots\!91}{36\!\cdots\!64}a^{10}-\frac{13\!\cdots\!81}{18\!\cdots\!32}a^{9}+\frac{33\!\cdots\!25}{73\!\cdots\!28}a^{8}+\frac{96\!\cdots\!11}{46\!\cdots\!08}a^{7}+\frac{74\!\cdots\!77}{46\!\cdots\!08}a^{6}+\frac{10\!\cdots\!93}{57\!\cdots\!51}a^{5}-\frac{18\!\cdots\!75}{18\!\cdots\!32}a^{4}-\frac{48\!\cdots\!31}{11\!\cdots\!02}a^{3}+\frac{37\!\cdots\!71}{92\!\cdots\!16}a^{2}-\frac{37\!\cdots\!77}{57\!\cdots\!51}a-\frac{29\!\cdots\!89}{23\!\cdots\!04}$, $\frac{1}{56\!\cdots\!48}a^{31}+\frac{15\!\cdots\!29}{21\!\cdots\!48}a^{30}+\frac{17\!\cdots\!27}{28\!\cdots\!24}a^{29}+\frac{17\!\cdots\!23}{28\!\cdots\!24}a^{28}-\frac{20\!\cdots\!57}{56\!\cdots\!48}a^{27}+\frac{44\!\cdots\!71}{28\!\cdots\!24}a^{26}-\frac{19\!\cdots\!89}{28\!\cdots\!24}a^{25}-\frac{77\!\cdots\!67}{28\!\cdots\!24}a^{24}+\frac{13\!\cdots\!75}{28\!\cdots\!24}a^{23}+\frac{62\!\cdots\!43}{35\!\cdots\!28}a^{22}+\frac{33\!\cdots\!75}{28\!\cdots\!24}a^{21}-\frac{76\!\cdots\!99}{12\!\cdots\!92}a^{20}+\frac{44\!\cdots\!25}{28\!\cdots\!24}a^{19}+\frac{10\!\cdots\!65}{14\!\cdots\!12}a^{18}+\frac{64\!\cdots\!39}{14\!\cdots\!12}a^{17}-\frac{16\!\cdots\!31}{70\!\cdots\!56}a^{16}-\frac{10\!\cdots\!43}{56\!\cdots\!48}a^{15}-\frac{40\!\cdots\!13}{28\!\cdots\!24}a^{14}+\frac{14\!\cdots\!93}{70\!\cdots\!56}a^{13}-\frac{58\!\cdots\!75}{28\!\cdots\!24}a^{12}-\frac{17\!\cdots\!73}{14\!\cdots\!12}a^{11}+\frac{41\!\cdots\!87}{14\!\cdots\!12}a^{10}+\frac{19\!\cdots\!67}{70\!\cdots\!56}a^{9}-\frac{11\!\cdots\!09}{32\!\cdots\!48}a^{8}-\frac{69\!\cdots\!89}{35\!\cdots\!28}a^{7}+\frac{63\!\cdots\!79}{35\!\cdots\!28}a^{6}+\frac{77\!\cdots\!59}{17\!\cdots\!64}a^{5}+\frac{21\!\cdots\!59}{88\!\cdots\!32}a^{4}-\frac{22\!\cdots\!25}{44\!\cdots\!16}a^{3}-\frac{25\!\cdots\!61}{80\!\cdots\!12}a^{2}+\frac{13\!\cdots\!91}{44\!\cdots\!16}a-\frac{11\!\cdots\!31}{44\!\cdots\!16}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
not computed
Relative class number: data not computed
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{9681025765132954395609012379}{21001820160311694159622526253764} a^{31} - \frac{923535258826415065700059008855}{168014561282493553276980210030112} a^{30} + \frac{3915293652427928627024401004501}{84007280641246776638490105015056} a^{29} - \frac{48362885045964593946503500783859}{168014561282493553276980210030112} a^{28} + \frac{4784784349631026151006884051171}{3231049255432568332249619423656} a^{27} - \frac{1081012437539006998332384248344747}{168014561282493553276980210030112} a^{26} + \frac{2053254201986854239326991397709735}{84007280641246776638490105015056} a^{25} - \frac{13728560205886187710358911664536403}{168014561282493553276980210030112} a^{24} + \frac{10181124954299707977784546707232353}{42003640320623388319245052507528} a^{23} - \frac{6693794386793038799421342765794619}{10500910080155847079811263126882} a^{22} + \frac{30986923415312589317394683452922723}{21001820160311694159622526253764} a^{21} - \frac{248756379802764898850548643018131067}{84007280641246776638490105015056} a^{20} + \frac{208686669009162675301410097882757531}{42003640320623388319245052507528} a^{19} - \frac{10353565880874548774627978571390879}{1615524627716284166124809711828} a^{18} + \frac{188857026423422380215683271661040195}{42003640320623388319245052507528} a^{17} + \frac{418956329796294778462154790080169683}{84007280641246776638490105015056} a^{16} - \frac{128676841135038693316754547333423783}{5250455040077923539905631563441} a^{15} + \frac{8246279233543699220649744348509358873}{168014561282493553276980210030112} a^{14} - \frac{390552445161640332406829553951507223}{6462098510865136664499238847312} a^{13} + \frac{5754415563916689593529730990234217963}{168014561282493553276980210030112} a^{12} + \frac{1414204990586334665651793434080110709}{42003640320623388319245052507528} a^{11} - \frac{1134473824859730229569827043911273705}{10500910080155847079811263126882} a^{10} + \frac{2535411012342194229646550882187632755}{21001820160311694159622526253764} a^{9} - \frac{3887966940879497299518677601440897471}{84007280641246776638490105015056} a^{8} - \frac{345083888683122150599333536676264389}{10500910080155847079811263126882} a^{7} + \frac{212400506418689484614122979845091232}{5250455040077923539905631563441} a^{6} - \frac{44176102757659574845157629152279523}{5250455040077923539905631563441} a^{5} - \frac{83983730531589073308431750284134343}{10500910080155847079811263126882} a^{4} + \frac{28490313510058955693645393399479742}{5250455040077923539905631563441} a^{3} - \frac{6073732305556373265659569088263666}{5250455040077923539905631563441} a^{2} + \frac{42615330623753120773111911208760}{403881156929071041531202427957} a - \frac{10926972916013630821050666881876}{5250455040077923539905631563441} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot R \cdot h}{6\cdot\sqrt{323436686508763086889139574016939351080960000000000000000}}\cr\mathstrut & \text{
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.2.0.1}{2} }^{16}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.4.0.1}{4} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{16}$ | ${\href{/padicField/37.8.0.1}{8} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
\(3\) | 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(5\) | 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(29\) | 29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(769\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |