Normalized defining polynomial
\( x^{32} - 6 x^{31} - 5 x^{30} + 74 x^{29} + 129 x^{28} - 1066 x^{27} - 668 x^{26} + 7244 x^{25} + \cdots + 256 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(323436686508763086889139574016939351080960000000000000000\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{16}\cdot 29^{8}\cdot 769^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(58.34\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{1/2}29^{1/2}769^{1/2}\approx 1635.8850815384312$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(29\), \(769\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{16}-\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{17}-\frac{1}{2}a^{15}-\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{8}a^{20}-\frac{1}{4}a^{19}+\frac{1}{8}a^{18}+\frac{1}{4}a^{17}-\frac{1}{8}a^{16}-\frac{1}{4}a^{15}-\frac{1}{4}a^{14}+\frac{3}{8}a^{12}-\frac{1}{4}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}+\frac{1}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{21}+\frac{1}{8}a^{19}-\frac{1}{8}a^{17}-\frac{1}{4}a^{15}+\frac{3}{8}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{8}+\frac{1}{8}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{112}a^{22}-\frac{3}{56}a^{21}-\frac{1}{112}a^{20}-\frac{3}{56}a^{19}-\frac{3}{112}a^{18}-\frac{3}{8}a^{17}-\frac{1}{28}a^{15}+\frac{23}{112}a^{14}-\frac{1}{8}a^{13}+\frac{1}{56}a^{12}-\frac{1}{2}a^{11}-\frac{3}{7}a^{10}-\frac{1}{4}a^{9}-\frac{5}{14}a^{8}-\frac{5}{14}a^{7}+\frac{7}{16}a^{6}-\frac{1}{2}a^{5}+\frac{11}{28}a^{4}+\frac{5}{14}a^{3}-\frac{1}{14}a^{2}-\frac{2}{7}a-\frac{5}{14}$, $\frac{1}{112}a^{23}+\frac{5}{112}a^{21}+\frac{1}{56}a^{20}-\frac{25}{112}a^{19}+\frac{5}{56}a^{18}-\frac{3}{8}a^{17}+\frac{19}{56}a^{16}-\frac{1}{112}a^{15}+\frac{5}{14}a^{14}+\frac{11}{28}a^{13}+\frac{27}{56}a^{12}+\frac{9}{28}a^{11}-\frac{9}{28}a^{10}-\frac{5}{14}a^{9}-\frac{23}{112}a^{7}+\frac{1}{8}a^{6}-\frac{13}{56}a^{5}+\frac{5}{56}a^{4}+\frac{9}{28}a^{3}-\frac{13}{28}a^{2}+\frac{3}{7}a+\frac{5}{14}$, $\frac{1}{448}a^{24}-\frac{1}{224}a^{23}-\frac{1}{448}a^{22}+\frac{1}{32}a^{21}-\frac{23}{448}a^{20}-\frac{43}{224}a^{19}-\frac{25}{112}a^{18}+\frac{55}{112}a^{17}-\frac{19}{64}a^{16}+\frac{75}{224}a^{15}-\frac{59}{224}a^{14}+\frac{15}{56}a^{13}-\frac{1}{16}a^{12}+\frac{15}{112}a^{11}-\frac{9}{56}a^{10}+\frac{17}{56}a^{9}-\frac{9}{64}a^{8}-\frac{37}{112}a^{7}+\frac{25}{112}a^{6}+\frac{5}{14}a^{5}-\frac{27}{112}a^{4}-\frac{1}{2}a^{3}-\frac{3}{7}a^{2}-\frac{1}{14}a+\frac{3}{28}$, $\frac{1}{448}a^{25}-\frac{1}{448}a^{23}-\frac{15}{448}a^{21}+\frac{9}{112}a^{19}-\frac{1}{28}a^{18}-\frac{141}{448}a^{17}+\frac{37}{112}a^{16}+\frac{1}{224}a^{15}+\frac{27}{56}a^{14}+\frac{55}{112}a^{13}+\frac{3}{16}a^{12}-\frac{1}{14}a^{11}+\frac{25}{56}a^{10}-\frac{9}{64}a^{9}+\frac{103}{224}a^{8}+\frac{3}{7}a^{7}-\frac{43}{112}a^{6}+\frac{55}{112}a^{5}-\frac{9}{28}a^{4}-\frac{5}{28}a^{3}-\frac{5}{28}a^{2}+\frac{1}{4}a-\frac{5}{14}$, $\frac{1}{896}a^{26}-\frac{1}{896}a^{24}-\frac{1}{224}a^{23}+\frac{1}{896}a^{22}-\frac{1}{224}a^{21}-\frac{11}{224}a^{20}+\frac{53}{224}a^{19}+\frac{163}{896}a^{18}-\frac{33}{224}a^{17}-\frac{47}{448}a^{16}-\frac{101}{224}a^{15}-\frac{89}{224}a^{14}-\frac{107}{224}a^{13}+\frac{1}{14}a^{12}-\frac{5}{16}a^{11}-\frac{239}{896}a^{10}-\frac{153}{448}a^{9}-\frac{1}{2}a^{8}-\frac{3}{56}a^{7}+\frac{13}{224}a^{6}+\frac{9}{112}a^{5}+\frac{19}{56}a^{4}+\frac{13}{28}a^{3}-\frac{9}{56}a^{2}+\frac{1}{28}a+\frac{5}{14}$, $\frac{1}{896}a^{27}-\frac{1}{896}a^{25}+\frac{1}{896}a^{23}+\frac{1}{224}a^{21}+\frac{1}{56}a^{20}-\frac{205}{896}a^{19}-\frac{5}{32}a^{18}-\frac{55}{448}a^{17}-\frac{9}{112}a^{16}+\frac{107}{224}a^{15}+\frac{69}{224}a^{14}-\frac{1}{8}a^{13}-\frac{5}{16}a^{12}+\frac{65}{896}a^{11}+\frac{39}{448}a^{10}+\frac{69}{224}a^{8}+\frac{75}{224}a^{7}+\frac{5}{56}a^{6}+\frac{9}{28}a^{5}+\frac{19}{56}a^{4}+\frac{1}{56}a^{3}+\frac{11}{28}a^{2}+\frac{5}{14}a-\frac{2}{7}$, $\frac{1}{25088}a^{28}-\frac{3}{12544}a^{27}+\frac{13}{25088}a^{26}+\frac{11}{12544}a^{25}-\frac{17}{25088}a^{24}+\frac{1}{256}a^{23}-\frac{45}{12544}a^{22}-\frac{47}{1568}a^{21}+\frac{855}{25088}a^{20}-\frac{339}{12544}a^{19}+\frac{1489}{6272}a^{18}+\frac{347}{896}a^{17}+\frac{891}{6272}a^{16}-\frac{2955}{6272}a^{15}+\frac{361}{3136}a^{14}-\frac{461}{1568}a^{13}+\frac{3649}{25088}a^{12}+\frac{31}{448}a^{11}-\frac{3859}{12544}a^{10}-\frac{863}{3136}a^{9}-\frac{171}{1568}a^{8}-\frac{375}{784}a^{7}+\frac{849}{3136}a^{6}+\frac{23}{112}a^{5}-\frac{33}{392}a^{4}+\frac{41}{196}a^{3}+\frac{117}{784}a^{2}+\frac{61}{196}a+\frac{23}{392}$, $\frac{1}{25088}a^{29}+\frac{5}{25088}a^{27}-\frac{3}{6272}a^{26}-\frac{25}{25088}a^{25}-\frac{1}{6272}a^{24}-\frac{17}{12544}a^{23}+\frac{13}{6272}a^{22}+\frac{1047}{25088}a^{21}-\frac{37}{896}a^{20}+\frac{885}{6272}a^{19}-\frac{789}{6272}a^{18}-\frac{2637}{6272}a^{17}+\frac{3091}{6272}a^{16}+\frac{753}{1568}a^{15}+\frac{307}{1568}a^{14}-\frac{745}{3584}a^{13}+\frac{2295}{12544}a^{12}-\frac{4685}{12544}a^{11}+\frac{1999}{6272}a^{10}+\frac{663}{1568}a^{9}+\frac{309}{784}a^{8}+\frac{1075}{3136}a^{7}-\frac{183}{1568}a^{6}-\frac{159}{392}a^{5}-\frac{95}{392}a^{4}-\frac{285}{784}a^{3}+\frac{25}{392}a^{2}+\frac{195}{392}a+\frac{69}{196}$, $\frac{1}{57\!\cdots\!64}a^{30}-\frac{4668933693793}{53\!\cdots\!88}a^{29}-\frac{53\!\cdots\!83}{57\!\cdots\!64}a^{28}+\frac{87\!\cdots\!27}{28\!\cdots\!32}a^{27}+\frac{23\!\cdots\!63}{57\!\cdots\!64}a^{26}+\frac{26\!\cdots\!97}{28\!\cdots\!32}a^{25}+\frac{71\!\cdots\!73}{28\!\cdots\!32}a^{24}-\frac{62\!\cdots\!35}{72\!\cdots\!08}a^{23}+\frac{13\!\cdots\!43}{57\!\cdots\!64}a^{22}+\frac{13\!\cdots\!91}{41\!\cdots\!76}a^{21}+\frac{43\!\cdots\!29}{72\!\cdots\!08}a^{20}+\frac{35\!\cdots\!83}{14\!\cdots\!16}a^{19}+\frac{11\!\cdots\!39}{14\!\cdots\!16}a^{18}-\frac{56\!\cdots\!39}{14\!\cdots\!16}a^{17}-\frac{31\!\cdots\!11}{72\!\cdots\!08}a^{16}-\frac{88\!\cdots\!69}{18\!\cdots\!52}a^{15}+\frac{49\!\cdots\!63}{82\!\cdots\!52}a^{14}+\frac{26\!\cdots\!03}{72\!\cdots\!08}a^{13}-\frac{98\!\cdots\!69}{28\!\cdots\!32}a^{12}+\frac{24\!\cdots\!07}{72\!\cdots\!08}a^{11}+\frac{27\!\cdots\!33}{72\!\cdots\!08}a^{10}-\frac{97\!\cdots\!75}{36\!\cdots\!04}a^{9}-\frac{35\!\cdots\!97}{72\!\cdots\!08}a^{8}-\frac{26\!\cdots\!77}{18\!\cdots\!52}a^{7}-\frac{68\!\cdots\!57}{18\!\cdots\!52}a^{6}-\frac{29\!\cdots\!77}{90\!\cdots\!76}a^{5}+\frac{66\!\cdots\!07}{18\!\cdots\!52}a^{4}-\frac{11\!\cdots\!95}{45\!\cdots\!88}a^{3}+\frac{24\!\cdots\!49}{90\!\cdots\!76}a^{2}-\frac{10\!\cdots\!07}{22\!\cdots\!44}a-\frac{81\!\cdots\!27}{80\!\cdots\!73}$, $\frac{1}{62\!\cdots\!16}a^{31}-\frac{23\!\cdots\!83}{31\!\cdots\!08}a^{30}-\frac{77\!\cdots\!39}{62\!\cdots\!16}a^{29}-\frac{24\!\cdots\!01}{31\!\cdots\!08}a^{28}-\frac{12\!\cdots\!57}{62\!\cdots\!16}a^{27}-\frac{93\!\cdots\!41}{44\!\cdots\!44}a^{26}-\frac{22\!\cdots\!37}{31\!\cdots\!08}a^{25}+\frac{80\!\cdots\!53}{78\!\cdots\!52}a^{24}+\frac{38\!\cdots\!19}{62\!\cdots\!16}a^{23}+\frac{11\!\cdots\!81}{31\!\cdots\!08}a^{22}+\frac{32\!\cdots\!27}{82\!\cdots\!16}a^{21}-\frac{77\!\cdots\!29}{15\!\cdots\!04}a^{20}-\frac{48\!\cdots\!71}{32\!\cdots\!96}a^{19}-\frac{37\!\cdots\!37}{22\!\cdots\!72}a^{18}+\frac{19\!\cdots\!01}{10\!\cdots\!76}a^{17}-\frac{15\!\cdots\!95}{39\!\cdots\!76}a^{16}+\frac{14\!\cdots\!69}{62\!\cdots\!16}a^{15}+\frac{97\!\cdots\!61}{78\!\cdots\!52}a^{14}+\frac{76\!\cdots\!77}{31\!\cdots\!08}a^{13}-\frac{16\!\cdots\!69}{39\!\cdots\!76}a^{12}+\frac{22\!\cdots\!21}{41\!\cdots\!08}a^{11}-\frac{12\!\cdots\!59}{49\!\cdots\!72}a^{10}+\frac{36\!\cdots\!19}{78\!\cdots\!52}a^{9}+\frac{57\!\cdots\!53}{28\!\cdots\!84}a^{8}-\frac{48\!\cdots\!89}{19\!\cdots\!88}a^{7}-\frac{16\!\cdots\!35}{49\!\cdots\!72}a^{6}-\frac{10\!\cdots\!87}{28\!\cdots\!84}a^{5}+\frac{10\!\cdots\!03}{83\!\cdots\!08}a^{4}+\frac{24\!\cdots\!25}{98\!\cdots\!44}a^{3}+\frac{59\!\cdots\!35}{61\!\cdots\!59}a^{2}+\frac{49\!\cdots\!27}{35\!\cdots\!48}a+\frac{10\!\cdots\!47}{12\!\cdots\!18}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{210}$, which has order $420$ (assuming GRH)
Relative class number: $420$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{633182890083330948434501457443116222320205374320396522569393425}{1884072035870496987506600562113126638536553774436744166592236591712} a^{31} + \frac{3758583728427771014135491455289706415779794926857629295479214701}{1884072035870496987506600562113126638536553774436744166592236591712} a^{30} + \frac{3395613917085764343669598424287187943775804494868357602666252523}{1884072035870496987506600562113126638536553774436744166592236591712} a^{29} - \frac{5821673152468727791288730702102787221581471359645804884734782581}{235509004483812123438325070264140829817069221804593020824029573964} a^{28} - \frac{84607058694451372498932376235371845419468476086545274813687027581}{1884072035870496987506600562113126638536553774436744166592236591712} a^{27} + \frac{83594655366393118296959006973675678485384793824336722809089797861}{235509004483812123438325070264140829817069221804593020824029573964} a^{26} + \frac{116094073555191667939739147036960362585579080270593033091154046303}{471018008967624246876650140528281659634138443609186041648059147928} a^{25} - \frac{4545509320734382411113736692179203809780607200343960610910267865501}{1884072035870496987506600562113126638536553774436744166592236591712} a^{24} - \frac{6837856503967124682353210759701124667093018516397103702964001040197}{1884072035870496987506600562113126638536553774436744166592236591712} a^{23} + \frac{35771413453763955122305710517976463221232727841607852381671705233365}{1884072035870496987506600562113126638536553774436744166592236591712} a^{22} + \frac{169970538764145178635952690565647511400939623826003950675183172333}{12395210762305901233596056329691622621951011673925948464422609156} a^{21} - \frac{127130894193104153111611176872580681185235819033646522427867518187005}{1884072035870496987506600562113126638536553774436744166592236591712} a^{20} - \frac{124481138432394039310974041546527233273104043369391993556003965791999}{942036017935248493753300281056563319268276887218372083296118295856} a^{19} + \frac{392918331096787061994867297658405163529792090104997197386275562174529}{942036017935248493753300281056563319268276887218372083296118295856} a^{18} - \frac{2006791173608813992918971788490324664570596785605645649076258546553}{42819818997056749716059103684389241784921676691744185604369013448} a^{17} - \frac{114487739977606885775637745050053517057526746268114898989147790809167}{942036017935248493753300281056563319268276887218372083296118295856} a^{16} - \frac{3622960638140284462541484996338722848880825246228947602298894217588169}{1884072035870496987506600562113126638536553774436744166592236591712} a^{15} + \frac{14244995298857634033376759110342112775402198319652468633572713364927011}{1884072035870496987506600562113126638536553774436744166592236591712} a^{14} - \frac{4314281742522135082841536849360049335975723061189645568847438060181055}{235509004483812123438325070264140829817069221804593020824029573964} a^{13} + \frac{55706491337824911501036844036523119491569585711717716330909902590442877}{1884072035870496987506600562113126638536553774436744166592236591712} a^{12} - \frac{115988252546706144506262866532939145932351363478689228165681362505391}{3541488789230257495313158951340463606271717621121699561263602616} a^{11} + \frac{6367111119727914204100687528195197750337296760694829545296354637300815}{235509004483812123438325070264140829817069221804593020824029573964} a^{10} - \frac{2331021245575077830763593190395902574793810373218441678727446430313251}{117754502241906061719162535132070414908534610902296510412014786982} a^{9} + \frac{11209671259747925820885453635817919528628107885263428216023161781184043}{942036017935248493753300281056563319268276887218372083296118295856} a^{8} - \frac{902663412953287843219021984972547769002888814586100455429260111234701}{117754502241906061719162535132070414908534610902296510412014786982} a^{7} + \frac{223506699367764302942532417330608357839826716767551579964922353716323}{58877251120953030859581267566035207454267305451148255206007393491} a^{6} - \frac{2519030591639840946302286677565266122638213729184312220956410199420}{1201576553488837364481250358490514437842189907166290922571579459} a^{5} + \frac{1274034964282146792019859030463760823723390493048795553984841744877}{1995839021049255283375636188679159574720925608513500176474826898} a^{4} - \frac{24557761550033201032705663826666422285374818098530251381386037192624}{58877251120953030859581267566035207454267305451148255206007393491} a^{3} + \frac{4321568136104912836146162555780639858775432116539267592039138118662}{58877251120953030859581267566035207454267305451148255206007393491} a^{2} - \frac{964757332468260564967788088093636119576045311324342764051848537880}{58877251120953030859581267566035207454267305451148255206007393491} a + \frac{81641141052652358523584136026482619265574528037928555778553399604}{58877251120953030859581267566035207454267305451148255206007393491} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{35\!\cdots\!33}{16\!\cdots\!04}a^{31}-\frac{41\!\cdots\!43}{33\!\cdots\!08}a^{30}-\frac{13\!\cdots\!57}{11\!\cdots\!36}a^{29}+\frac{51\!\cdots\!39}{33\!\cdots\!08}a^{28}+\frac{11\!\cdots\!87}{41\!\cdots\!76}a^{27}-\frac{73\!\cdots\!39}{33\!\cdots\!08}a^{26}-\frac{27\!\cdots\!55}{16\!\cdots\!04}a^{25}+\frac{12\!\cdots\!37}{83\!\cdots\!52}a^{24}+\frac{38\!\cdots\!53}{16\!\cdots\!04}a^{23}-\frac{39\!\cdots\!37}{33\!\cdots\!08}a^{22}-\frac{79\!\cdots\!21}{87\!\cdots\!16}a^{21}+\frac{69\!\cdots\!03}{16\!\cdots\!04}a^{20}+\frac{43\!\cdots\!85}{52\!\cdots\!72}a^{19}-\frac{10\!\cdots\!45}{41\!\cdots\!76}a^{18}+\frac{14\!\cdots\!05}{75\!\cdots\!32}a^{17}+\frac{81\!\cdots\!21}{10\!\cdots\!44}a^{16}+\frac{20\!\cdots\!29}{16\!\cdots\!04}a^{15}-\frac{15\!\cdots\!63}{33\!\cdots\!08}a^{14}+\frac{93\!\cdots\!31}{83\!\cdots\!52}a^{13}-\frac{23\!\cdots\!51}{13\!\cdots\!18}a^{12}+\frac{27\!\cdots\!27}{14\!\cdots\!78}a^{11}-\frac{20\!\cdots\!91}{13\!\cdots\!18}a^{10}+\frac{48\!\cdots\!81}{41\!\cdots\!76}a^{9}-\frac{72\!\cdots\!23}{10\!\cdots\!44}a^{8}+\frac{46\!\cdots\!37}{10\!\cdots\!44}a^{7}-\frac{14\!\cdots\!99}{65\!\cdots\!59}a^{6}+\frac{12\!\cdots\!63}{10\!\cdots\!44}a^{5}-\frac{78\!\cdots\!95}{22\!\cdots\!02}a^{4}+\frac{16\!\cdots\!32}{65\!\cdots\!59}a^{3}-\frac{32\!\cdots\!95}{74\!\cdots\!96}a^{2}+\frac{37\!\cdots\!89}{37\!\cdots\!48}a-\frac{55\!\cdots\!10}{65\!\cdots\!59}$, $\frac{11\!\cdots\!25}{49\!\cdots\!72}a^{31}-\frac{89\!\cdots\!33}{62\!\cdots\!16}a^{30}-\frac{40\!\cdots\!31}{31\!\cdots\!08}a^{29}+\frac{11\!\cdots\!61}{62\!\cdots\!16}a^{28}+\frac{10\!\cdots\!37}{31\!\cdots\!08}a^{27}-\frac{15\!\cdots\!93}{62\!\cdots\!16}a^{26}-\frac{55\!\cdots\!25}{31\!\cdots\!08}a^{25}+\frac{26\!\cdots\!79}{15\!\cdots\!04}a^{24}+\frac{58\!\cdots\!13}{22\!\cdots\!72}a^{23}-\frac{84\!\cdots\!07}{62\!\cdots\!16}a^{22}-\frac{16\!\cdots\!09}{16\!\cdots\!32}a^{21}+\frac{15\!\cdots\!63}{31\!\cdots\!08}a^{20}+\frac{33\!\cdots\!63}{35\!\cdots\!48}a^{19}-\frac{46\!\cdots\!15}{15\!\cdots\!04}a^{18}+\frac{48\!\cdots\!99}{14\!\cdots\!64}a^{17}+\frac{32\!\cdots\!43}{39\!\cdots\!76}a^{16}+\frac{10\!\cdots\!53}{78\!\cdots\!52}a^{15}-\frac{33\!\cdots\!13}{62\!\cdots\!16}a^{14}+\frac{20\!\cdots\!75}{15\!\cdots\!04}a^{13}-\frac{33\!\cdots\!99}{15\!\cdots\!04}a^{12}+\frac{96\!\cdots\!61}{41\!\cdots\!08}a^{11}-\frac{30\!\cdots\!27}{15\!\cdots\!04}a^{10}+\frac{40\!\cdots\!97}{28\!\cdots\!84}a^{9}-\frac{68\!\cdots\!59}{78\!\cdots\!52}a^{8}+\frac{11\!\cdots\!45}{19\!\cdots\!88}a^{7}-\frac{10\!\cdots\!31}{39\!\cdots\!76}a^{6}+\frac{75\!\cdots\!17}{49\!\cdots\!72}a^{5}-\frac{22\!\cdots\!63}{47\!\cdots\!76}a^{4}+\frac{15\!\cdots\!55}{49\!\cdots\!72}a^{3}-\frac{38\!\cdots\!41}{70\!\cdots\!96}a^{2}+\frac{60\!\cdots\!81}{50\!\cdots\!64}a-\frac{14\!\cdots\!53}{49\!\cdots\!72}$, $\frac{40\!\cdots\!09}{28\!\cdots\!28}a^{31}-\frac{17\!\cdots\!85}{20\!\cdots\!52}a^{30}-\frac{21\!\cdots\!13}{28\!\cdots\!28}a^{29}+\frac{37\!\cdots\!11}{35\!\cdots\!16}a^{28}+\frac{54\!\cdots\!97}{28\!\cdots\!28}a^{27}-\frac{53\!\cdots\!79}{35\!\cdots\!16}a^{26}-\frac{37\!\cdots\!59}{35\!\cdots\!16}a^{25}+\frac{14\!\cdots\!85}{14\!\cdots\!64}a^{24}+\frac{44\!\cdots\!07}{28\!\cdots\!28}a^{23}-\frac{11\!\cdots\!51}{14\!\cdots\!64}a^{22}-\frac{43\!\cdots\!25}{75\!\cdots\!56}a^{21}+\frac{40\!\cdots\!25}{14\!\cdots\!64}a^{20}+\frac{28\!\cdots\!65}{51\!\cdots\!88}a^{19}-\frac{31\!\cdots\!71}{17\!\cdots\!08}a^{18}+\frac{49\!\cdots\!01}{25\!\cdots\!44}a^{17}+\frac{63\!\cdots\!67}{12\!\cdots\!72}a^{16}+\frac{23\!\cdots\!49}{28\!\cdots\!28}a^{15}-\frac{57\!\cdots\!99}{17\!\cdots\!08}a^{14}+\frac{55\!\cdots\!39}{71\!\cdots\!32}a^{13}-\frac{17\!\cdots\!33}{14\!\cdots\!64}a^{12}+\frac{74\!\cdots\!19}{53\!\cdots\!04}a^{11}-\frac{29\!\cdots\!11}{25\!\cdots\!44}a^{10}+\frac{43\!\cdots\!29}{51\!\cdots\!88}a^{9}-\frac{18\!\cdots\!57}{35\!\cdots\!16}a^{8}+\frac{58\!\cdots\!11}{17\!\cdots\!08}a^{7}-\frac{72\!\cdots\!21}{44\!\cdots\!52}a^{6}+\frac{80\!\cdots\!23}{89\!\cdots\!04}a^{5}-\frac{41\!\cdots\!61}{15\!\cdots\!56}a^{4}+\frac{39\!\cdots\!41}{22\!\cdots\!76}a^{3}-\frac{69\!\cdots\!97}{22\!\cdots\!76}a^{2}+\frac{15\!\cdots\!61}{22\!\cdots\!76}a-\frac{65\!\cdots\!85}{11\!\cdots\!38}$, $\frac{64\!\cdots\!40}{61\!\cdots\!59}a^{31}-\frac{13\!\cdots\!55}{22\!\cdots\!72}a^{30}-\frac{94\!\cdots\!47}{14\!\cdots\!92}a^{29}+\frac{30\!\cdots\!19}{39\!\cdots\!76}a^{28}+\frac{30\!\cdots\!03}{19\!\cdots\!88}a^{27}-\frac{42\!\cdots\!97}{39\!\cdots\!76}a^{26}-\frac{18\!\cdots\!93}{19\!\cdots\!88}a^{25}+\frac{16\!\cdots\!85}{22\!\cdots\!72}a^{24}+\frac{12\!\cdots\!29}{98\!\cdots\!44}a^{23}-\frac{90\!\cdots\!31}{15\!\cdots\!04}a^{22}-\frac{11\!\cdots\!77}{20\!\cdots\!04}a^{21}+\frac{29\!\cdots\!77}{14\!\cdots\!64}a^{20}+\frac{32\!\cdots\!83}{73\!\cdots\!84}a^{19}-\frac{88\!\cdots\!21}{71\!\cdots\!32}a^{18}-\frac{32\!\cdots\!83}{39\!\cdots\!76}a^{17}+\frac{16\!\cdots\!63}{39\!\cdots\!76}a^{16}+\frac{23\!\cdots\!59}{39\!\cdots\!76}a^{15}-\frac{32\!\cdots\!75}{14\!\cdots\!64}a^{14}+\frac{41\!\cdots\!65}{78\!\cdots\!52}a^{13}-\frac{12\!\cdots\!25}{15\!\cdots\!04}a^{12}+\frac{35\!\cdots\!73}{41\!\cdots\!08}a^{11}-\frac{25\!\cdots\!57}{39\!\cdots\!76}a^{10}+\frac{18\!\cdots\!79}{39\!\cdots\!76}a^{9}-\frac{10\!\cdots\!49}{39\!\cdots\!76}a^{8}+\frac{33\!\cdots\!03}{19\!\cdots\!88}a^{7}-\frac{93\!\cdots\!23}{12\!\cdots\!18}a^{6}+\frac{43\!\cdots\!09}{98\!\cdots\!44}a^{5}-\frac{12\!\cdots\!67}{15\!\cdots\!56}a^{4}+\frac{46\!\cdots\!37}{49\!\cdots\!72}a^{3}-\frac{57\!\cdots\!19}{24\!\cdots\!36}a^{2}+\frac{15\!\cdots\!21}{35\!\cdots\!48}a+\frac{87\!\cdots\!71}{61\!\cdots\!59}$, $\frac{26\!\cdots\!71}{78\!\cdots\!52}a^{31}-\frac{80\!\cdots\!75}{39\!\cdots\!76}a^{30}-\frac{54\!\cdots\!65}{39\!\cdots\!76}a^{29}+\frac{11\!\cdots\!21}{44\!\cdots\!44}a^{28}+\frac{61\!\cdots\!23}{15\!\cdots\!04}a^{27}-\frac{11\!\cdots\!65}{31\!\cdots\!08}a^{26}-\frac{27\!\cdots\!97}{15\!\cdots\!04}a^{25}+\frac{76\!\cdots\!09}{31\!\cdots\!08}a^{24}+\frac{44\!\cdots\!95}{14\!\cdots\!64}a^{23}-\frac{30\!\cdots\!77}{15\!\cdots\!04}a^{22}-\frac{40\!\cdots\!13}{41\!\cdots\!08}a^{21}+\frac{22\!\cdots\!29}{31\!\cdots\!08}a^{20}+\frac{18\!\cdots\!79}{15\!\cdots\!04}a^{19}-\frac{24\!\cdots\!23}{56\!\cdots\!68}a^{18}+\frac{99\!\cdots\!55}{78\!\cdots\!52}a^{17}+\frac{10\!\cdots\!41}{78\!\cdots\!52}a^{16}+\frac{73\!\cdots\!03}{39\!\cdots\!76}a^{15}-\frac{44\!\cdots\!89}{56\!\cdots\!68}a^{14}+\frac{15\!\cdots\!73}{78\!\cdots\!52}a^{13}-\frac{10\!\cdots\!41}{31\!\cdots\!08}a^{12}+\frac{77\!\cdots\!95}{20\!\cdots\!04}a^{11}-\frac{50\!\cdots\!75}{15\!\cdots\!04}a^{10}+\frac{46\!\cdots\!45}{19\!\cdots\!88}a^{9}-\frac{52\!\cdots\!05}{35\!\cdots\!16}a^{8}+\frac{90\!\cdots\!63}{98\!\cdots\!44}a^{7}-\frac{18\!\cdots\!31}{39\!\cdots\!76}a^{6}+\frac{31\!\cdots\!11}{12\!\cdots\!18}a^{5}-\frac{21\!\cdots\!39}{23\!\cdots\!88}a^{4}+\frac{56\!\cdots\!07}{12\!\cdots\!18}a^{3}-\frac{13\!\cdots\!83}{98\!\cdots\!44}a^{2}+\frac{20\!\cdots\!73}{12\!\cdots\!18}a-\frac{94\!\cdots\!39}{70\!\cdots\!96}$, $\frac{10\!\cdots\!03}{15\!\cdots\!04}a^{31}-\frac{37\!\cdots\!35}{98\!\cdots\!44}a^{30}-\frac{94\!\cdots\!71}{22\!\cdots\!72}a^{29}+\frac{47\!\cdots\!19}{98\!\cdots\!44}a^{28}+\frac{15\!\cdots\!21}{15\!\cdots\!04}a^{27}-\frac{26\!\cdots\!13}{39\!\cdots\!76}a^{26}-\frac{47\!\cdots\!25}{78\!\cdots\!52}a^{25}+\frac{18\!\cdots\!25}{39\!\cdots\!76}a^{24}+\frac{17\!\cdots\!23}{22\!\cdots\!72}a^{23}-\frac{71\!\cdots\!45}{19\!\cdots\!88}a^{22}-\frac{86\!\cdots\!69}{25\!\cdots\!88}a^{21}+\frac{63\!\cdots\!11}{49\!\cdots\!72}a^{20}+\frac{11\!\cdots\!65}{39\!\cdots\!76}a^{19}-\frac{76\!\cdots\!23}{98\!\cdots\!44}a^{18}-\frac{88\!\cdots\!35}{17\!\cdots\!08}a^{17}+\frac{52\!\cdots\!55}{19\!\cdots\!88}a^{16}+\frac{60\!\cdots\!83}{15\!\cdots\!04}a^{15}-\frac{11\!\cdots\!55}{78\!\cdots\!52}a^{14}+\frac{26\!\cdots\!55}{78\!\cdots\!52}a^{13}-\frac{50\!\cdots\!17}{98\!\cdots\!44}a^{12}+\frac{27\!\cdots\!41}{51\!\cdots\!76}a^{11}-\frac{16\!\cdots\!41}{39\!\cdots\!76}a^{10}+\frac{57\!\cdots\!55}{19\!\cdots\!88}a^{9}-\frac{10\!\cdots\!86}{61\!\cdots\!59}a^{8}+\frac{26\!\cdots\!13}{24\!\cdots\!36}a^{7}-\frac{47\!\cdots\!59}{98\!\cdots\!44}a^{6}+\frac{13\!\cdots\!41}{49\!\cdots\!72}a^{5}-\frac{16\!\cdots\!43}{29\!\cdots\!86}a^{4}+\frac{14\!\cdots\!81}{24\!\cdots\!36}a^{3}-\frac{40\!\cdots\!87}{24\!\cdots\!36}a^{2}+\frac{19\!\cdots\!93}{61\!\cdots\!59}a+\frac{53\!\cdots\!48}{61\!\cdots\!59}$, $\frac{20\!\cdots\!75}{82\!\cdots\!16}a^{31}-\frac{25\!\cdots\!17}{16\!\cdots\!32}a^{30}-\frac{88\!\cdots\!69}{82\!\cdots\!16}a^{29}+\frac{15\!\cdots\!99}{82\!\cdots\!16}a^{28}+\frac{12\!\cdots\!79}{41\!\cdots\!08}a^{27}-\frac{15\!\cdots\!15}{59\!\cdots\!44}a^{26}-\frac{15\!\cdots\!49}{11\!\cdots\!88}a^{25}+\frac{30\!\cdots\!39}{16\!\cdots\!32}a^{24}+\frac{97\!\cdots\!69}{41\!\cdots\!08}a^{23}-\frac{24\!\cdots\!05}{16\!\cdots\!32}a^{22}-\frac{31\!\cdots\!55}{41\!\cdots\!08}a^{21}+\frac{87\!\cdots\!29}{16\!\cdots\!32}a^{20}+\frac{73\!\cdots\!05}{82\!\cdots\!16}a^{19}-\frac{19\!\cdots\!03}{59\!\cdots\!44}a^{18}+\frac{13\!\cdots\!39}{14\!\cdots\!36}a^{17}+\frac{40\!\cdots\!27}{41\!\cdots\!08}a^{16}+\frac{11\!\cdots\!29}{82\!\cdots\!16}a^{15}-\frac{97\!\cdots\!73}{16\!\cdots\!32}a^{14}+\frac{12\!\cdots\!31}{82\!\cdots\!16}a^{13}-\frac{40\!\cdots\!83}{16\!\cdots\!32}a^{12}+\frac{10\!\cdots\!83}{37\!\cdots\!28}a^{11}-\frac{19\!\cdots\!03}{82\!\cdots\!16}a^{10}+\frac{18\!\cdots\!65}{10\!\cdots\!52}a^{9}-\frac{22\!\cdots\!67}{20\!\cdots\!04}a^{8}+\frac{69\!\cdots\!29}{10\!\cdots\!52}a^{7}-\frac{73\!\cdots\!51}{20\!\cdots\!04}a^{6}+\frac{24\!\cdots\!69}{12\!\cdots\!44}a^{5}-\frac{57\!\cdots\!83}{87\!\cdots\!64}a^{4}+\frac{87\!\cdots\!05}{25\!\cdots\!88}a^{3}-\frac{45\!\cdots\!51}{47\!\cdots\!16}a^{2}+\frac{15\!\cdots\!13}{12\!\cdots\!44}a-\frac{32\!\cdots\!69}{37\!\cdots\!84}$, $\frac{29\!\cdots\!73}{14\!\cdots\!64}a^{31}-\frac{24\!\cdots\!93}{19\!\cdots\!88}a^{30}-\frac{32\!\cdots\!19}{28\!\cdots\!28}a^{29}+\frac{47\!\cdots\!31}{31\!\cdots\!08}a^{28}+\frac{88\!\cdots\!57}{31\!\cdots\!08}a^{27}-\frac{68\!\cdots\!29}{31\!\cdots\!08}a^{26}-\frac{49\!\cdots\!79}{31\!\cdots\!08}a^{25}+\frac{46\!\cdots\!53}{31\!\cdots\!08}a^{24}+\frac{35\!\cdots\!33}{15\!\cdots\!04}a^{23}-\frac{26\!\cdots\!57}{22\!\cdots\!72}a^{22}-\frac{14\!\cdots\!55}{16\!\cdots\!32}a^{21}+\frac{12\!\cdots\!49}{31\!\cdots\!08}a^{20}+\frac{13\!\cdots\!47}{15\!\cdots\!04}a^{19}-\frac{20\!\cdots\!91}{78\!\cdots\!52}a^{18}+\frac{54\!\cdots\!71}{24\!\cdots\!36}a^{17}+\frac{28\!\cdots\!73}{39\!\cdots\!76}a^{16}+\frac{18\!\cdots\!65}{15\!\cdots\!04}a^{15}-\frac{52\!\cdots\!55}{11\!\cdots\!36}a^{14}+\frac{35\!\cdots\!33}{31\!\cdots\!08}a^{13}-\frac{56\!\cdots\!67}{31\!\cdots\!08}a^{12}+\frac{16\!\cdots\!23}{82\!\cdots\!16}a^{11}-\frac{25\!\cdots\!17}{15\!\cdots\!04}a^{10}+\frac{11\!\cdots\!57}{98\!\cdots\!44}a^{9}-\frac{14\!\cdots\!33}{19\!\cdots\!88}a^{8}+\frac{18\!\cdots\!85}{39\!\cdots\!76}a^{7}-\frac{89\!\cdots\!61}{39\!\cdots\!76}a^{6}+\frac{78\!\cdots\!67}{61\!\cdots\!59}a^{5}-\frac{32\!\cdots\!25}{83\!\cdots\!08}a^{4}+\frac{25\!\cdots\!13}{98\!\cdots\!44}a^{3}-\frac{44\!\cdots\!45}{98\!\cdots\!44}a^{2}+\frac{51\!\cdots\!27}{49\!\cdots\!72}a-\frac{78\!\cdots\!73}{49\!\cdots\!72}$, $\frac{25\!\cdots\!85}{15\!\cdots\!04}a^{31}-\frac{30\!\cdots\!91}{31\!\cdots\!08}a^{30}-\frac{27\!\cdots\!79}{31\!\cdots\!08}a^{29}+\frac{37\!\cdots\!07}{31\!\cdots\!08}a^{28}+\frac{68\!\cdots\!25}{31\!\cdots\!08}a^{27}-\frac{49\!\cdots\!89}{28\!\cdots\!28}a^{26}-\frac{37\!\cdots\!55}{31\!\cdots\!08}a^{25}+\frac{46\!\cdots\!27}{39\!\cdots\!76}a^{24}+\frac{13\!\cdots\!77}{78\!\cdots\!52}a^{23}-\frac{37\!\cdots\!73}{40\!\cdots\!04}a^{22}-\frac{11\!\cdots\!73}{16\!\cdots\!32}a^{21}+\frac{51\!\cdots\!71}{15\!\cdots\!04}a^{20}+\frac{12\!\cdots\!15}{19\!\cdots\!88}a^{19}-\frac{79\!\cdots\!69}{39\!\cdots\!76}a^{18}+\frac{10\!\cdots\!51}{49\!\cdots\!72}a^{17}+\frac{51\!\cdots\!43}{78\!\cdots\!52}a^{16}+\frac{13\!\cdots\!71}{14\!\cdots\!64}a^{15}-\frac{11\!\cdots\!99}{31\!\cdots\!08}a^{14}+\frac{27\!\cdots\!13}{31\!\cdots\!08}a^{13}-\frac{22\!\cdots\!67}{15\!\cdots\!04}a^{12}+\frac{18\!\cdots\!69}{11\!\cdots\!88}a^{11}-\frac{49\!\cdots\!15}{39\!\cdots\!76}a^{10}+\frac{16\!\cdots\!31}{17\!\cdots\!08}a^{9}-\frac{21\!\cdots\!45}{39\!\cdots\!76}a^{8}+\frac{13\!\cdots\!37}{39\!\cdots\!76}a^{7}-\frac{16\!\cdots\!29}{98\!\cdots\!44}a^{6}+\frac{11\!\cdots\!51}{12\!\cdots\!18}a^{5}-\frac{44\!\cdots\!17}{16\!\cdots\!16}a^{4}+\frac{16\!\cdots\!11}{89\!\cdots\!04}a^{3}-\frac{15\!\cdots\!73}{49\!\cdots\!72}a^{2}+\frac{16\!\cdots\!49}{44\!\cdots\!52}a-\frac{88\!\cdots\!47}{61\!\cdots\!59}$, $\frac{76\!\cdots\!27}{57\!\cdots\!56}a^{31}-\frac{22\!\cdots\!13}{28\!\cdots\!28}a^{30}-\frac{49\!\cdots\!73}{57\!\cdots\!56}a^{29}+\frac{69\!\cdots\!89}{71\!\cdots\!32}a^{28}+\frac{11\!\cdots\!69}{57\!\cdots\!56}a^{27}-\frac{19\!\cdots\!43}{14\!\cdots\!64}a^{26}-\frac{35\!\cdots\!21}{28\!\cdots\!28}a^{25}+\frac{27\!\cdots\!57}{28\!\cdots\!28}a^{24}+\frac{92\!\cdots\!21}{57\!\cdots\!56}a^{23}-\frac{21\!\cdots\!03}{28\!\cdots\!28}a^{22}-\frac{51\!\cdots\!19}{75\!\cdots\!56}a^{21}+\frac{74\!\cdots\!15}{28\!\cdots\!28}a^{20}+\frac{25\!\cdots\!39}{44\!\cdots\!52}a^{19}-\frac{22\!\cdots\!31}{14\!\cdots\!64}a^{18}-\frac{38\!\cdots\!65}{35\!\cdots\!16}a^{17}+\frac{38\!\cdots\!61}{71\!\cdots\!32}a^{16}+\frac{44\!\cdots\!83}{57\!\cdots\!56}a^{15}-\frac{20\!\cdots\!63}{71\!\cdots\!32}a^{14}+\frac{19\!\cdots\!43}{28\!\cdots\!28}a^{13}-\frac{30\!\cdots\!45}{28\!\cdots\!28}a^{12}+\frac{32\!\cdots\!27}{29\!\cdots\!51}a^{11}-\frac{17\!\cdots\!11}{20\!\cdots\!52}a^{10}+\frac{42\!\cdots\!69}{71\!\cdots\!32}a^{9}-\frac{16\!\cdots\!17}{51\!\cdots\!88}a^{8}+\frac{70\!\cdots\!41}{31\!\cdots\!68}a^{7}-\frac{34\!\cdots\!09}{35\!\cdots\!16}a^{6}+\frac{10\!\cdots\!93}{17\!\cdots\!08}a^{5}-\frac{16\!\cdots\!05}{15\!\cdots\!56}a^{4}+\frac{10\!\cdots\!09}{89\!\cdots\!04}a^{3}-\frac{26\!\cdots\!61}{89\!\cdots\!04}a^{2}+\frac{12\!\cdots\!87}{22\!\cdots\!76}a+\frac{82\!\cdots\!99}{44\!\cdots\!52}$, $\frac{81\!\cdots\!39}{28\!\cdots\!28}a^{31}-\frac{26\!\cdots\!53}{15\!\cdots\!04}a^{30}-\frac{52\!\cdots\!49}{28\!\cdots\!28}a^{29}+\frac{16\!\cdots\!59}{78\!\cdots\!52}a^{28}+\frac{13\!\cdots\!75}{31\!\cdots\!08}a^{27}-\frac{23\!\cdots\!33}{78\!\cdots\!52}a^{26}-\frac{40\!\cdots\!07}{15\!\cdots\!04}a^{25}+\frac{31\!\cdots\!29}{15\!\cdots\!04}a^{24}+\frac{10\!\cdots\!15}{31\!\cdots\!08}a^{23}-\frac{24\!\cdots\!25}{15\!\cdots\!04}a^{22}-\frac{59\!\cdots\!55}{41\!\cdots\!08}a^{21}+\frac{12\!\cdots\!11}{22\!\cdots\!72}a^{20}+\frac{30\!\cdots\!99}{25\!\cdots\!82}a^{19}-\frac{13\!\cdots\!35}{39\!\cdots\!76}a^{18}-\frac{80\!\cdots\!31}{39\!\cdots\!76}a^{17}+\frac{56\!\cdots\!61}{49\!\cdots\!72}a^{16}+\frac{52\!\cdots\!05}{31\!\cdots\!08}a^{15}-\frac{48\!\cdots\!77}{78\!\cdots\!52}a^{14}+\frac{22\!\cdots\!05}{15\!\cdots\!04}a^{13}-\frac{35\!\cdots\!67}{15\!\cdots\!04}a^{12}+\frac{24\!\cdots\!29}{10\!\cdots\!52}a^{11}-\frac{71\!\cdots\!15}{39\!\cdots\!76}a^{10}+\frac{50\!\cdots\!11}{39\!\cdots\!76}a^{9}-\frac{10\!\cdots\!53}{14\!\cdots\!92}a^{8}+\frac{23\!\cdots\!87}{49\!\cdots\!72}a^{7}-\frac{14\!\cdots\!97}{70\!\cdots\!96}a^{6}+\frac{11\!\cdots\!75}{98\!\cdots\!44}a^{5}-\frac{71\!\cdots\!33}{29\!\cdots\!86}a^{4}+\frac{12\!\cdots\!31}{49\!\cdots\!72}a^{3}-\frac{20\!\cdots\!89}{24\!\cdots\!36}a^{2}+\frac{19\!\cdots\!69}{12\!\cdots\!18}a+\frac{12\!\cdots\!55}{35\!\cdots\!48}$, $\frac{42\!\cdots\!93}{75\!\cdots\!56}a^{31}-\frac{11\!\cdots\!55}{33\!\cdots\!64}a^{30}-\frac{10\!\cdots\!91}{37\!\cdots\!28}a^{29}+\frac{14\!\cdots\!93}{33\!\cdots\!64}a^{28}+\frac{86\!\cdots\!83}{11\!\cdots\!88}a^{27}-\frac{28\!\cdots\!87}{47\!\cdots\!52}a^{26}-\frac{15\!\cdots\!27}{41\!\cdots\!08}a^{25}+\frac{68\!\cdots\!71}{16\!\cdots\!32}a^{24}+\frac{17\!\cdots\!31}{29\!\cdots\!72}a^{23}-\frac{10\!\cdots\!01}{33\!\cdots\!64}a^{22}-\frac{88\!\cdots\!71}{41\!\cdots\!08}a^{21}+\frac{97\!\cdots\!23}{82\!\cdots\!16}a^{20}+\frac{17\!\cdots\!67}{82\!\cdots\!16}a^{19}-\frac{60\!\cdots\!19}{82\!\cdots\!16}a^{18}+\frac{99\!\cdots\!87}{82\!\cdots\!16}a^{17}+\frac{23\!\cdots\!77}{10\!\cdots\!52}a^{16}+\frac{26\!\cdots\!51}{82\!\cdots\!16}a^{15}-\frac{43\!\cdots\!35}{33\!\cdots\!64}a^{14}+\frac{52\!\cdots\!41}{16\!\cdots\!32}a^{13}-\frac{85\!\cdots\!77}{16\!\cdots\!32}a^{12}+\frac{48\!\cdots\!05}{82\!\cdots\!16}a^{11}-\frac{19\!\cdots\!87}{41\!\cdots\!08}a^{10}+\frac{72\!\cdots\!81}{20\!\cdots\!04}a^{9}-\frac{12\!\cdots\!13}{59\!\cdots\!44}a^{8}+\frac{39\!\cdots\!31}{29\!\cdots\!72}a^{7}-\frac{99\!\cdots\!49}{14\!\cdots\!36}a^{6}+\frac{18\!\cdots\!79}{51\!\cdots\!76}a^{5}-\frac{20\!\cdots\!97}{17\!\cdots\!28}a^{4}+\frac{35\!\cdots\!01}{51\!\cdots\!76}a^{3}-\frac{77\!\cdots\!11}{51\!\cdots\!76}a^{2}+\frac{66\!\cdots\!83}{37\!\cdots\!84}a-\frac{13\!\cdots\!25}{12\!\cdots\!44}$, $\frac{11\!\cdots\!65}{11\!\cdots\!36}a^{31}-\frac{38\!\cdots\!55}{62\!\cdots\!16}a^{30}-\frac{19\!\cdots\!87}{39\!\cdots\!76}a^{29}+\frac{67\!\cdots\!65}{89\!\cdots\!88}a^{28}+\frac{10\!\cdots\!71}{78\!\cdots\!52}a^{27}-\frac{67\!\cdots\!39}{62\!\cdots\!16}a^{26}-\frac{33\!\cdots\!55}{49\!\cdots\!72}a^{25}+\frac{57\!\cdots\!53}{78\!\cdots\!52}a^{24}+\frac{40\!\cdots\!21}{39\!\cdots\!76}a^{23}-\frac{52\!\cdots\!15}{89\!\cdots\!88}a^{22}-\frac{40\!\cdots\!67}{10\!\cdots\!08}a^{21}+\frac{93\!\cdots\!57}{44\!\cdots\!44}a^{20}+\frac{10\!\cdots\!89}{28\!\cdots\!84}a^{19}-\frac{20\!\cdots\!57}{15\!\cdots\!04}a^{18}+\frac{47\!\cdots\!47}{22\!\cdots\!72}a^{17}+\frac{28\!\cdots\!61}{71\!\cdots\!32}a^{16}+\frac{11\!\cdots\!29}{19\!\cdots\!88}a^{15}-\frac{14\!\cdots\!11}{62\!\cdots\!16}a^{14}+\frac{16\!\cdots\!53}{28\!\cdots\!28}a^{13}-\frac{13\!\cdots\!17}{14\!\cdots\!64}a^{12}+\frac{84\!\cdots\!43}{82\!\cdots\!16}a^{11}-\frac{13\!\cdots\!11}{15\!\cdots\!04}a^{10}+\frac{24\!\cdots\!09}{39\!\cdots\!76}a^{9}-\frac{29\!\cdots\!55}{78\!\cdots\!52}a^{8}+\frac{18\!\cdots\!17}{80\!\cdots\!24}a^{7}-\frac{46\!\cdots\!31}{39\!\cdots\!76}a^{6}+\frac{62\!\cdots\!77}{98\!\cdots\!44}a^{5}-\frac{67\!\cdots\!29}{33\!\cdots\!32}a^{4}+\frac{11\!\cdots\!33}{98\!\cdots\!44}a^{3}-\frac{65\!\cdots\!23}{24\!\cdots\!36}a^{2}+\frac{15\!\cdots\!71}{49\!\cdots\!72}a-\frac{92\!\cdots\!69}{49\!\cdots\!72}$, $\frac{56\!\cdots\!01}{31\!\cdots\!08}a^{31}-\frac{61\!\cdots\!49}{57\!\cdots\!56}a^{30}-\frac{28\!\cdots\!99}{31\!\cdots\!08}a^{29}+\frac{84\!\cdots\!45}{62\!\cdots\!16}a^{28}+\frac{72\!\cdots\!73}{31\!\cdots\!08}a^{27}-\frac{12\!\cdots\!69}{62\!\cdots\!16}a^{26}-\frac{94\!\cdots\!93}{78\!\cdots\!52}a^{25}+\frac{41\!\cdots\!63}{31\!\cdots\!08}a^{24}+\frac{58\!\cdots\!01}{31\!\cdots\!08}a^{23}-\frac{65\!\cdots\!21}{62\!\cdots\!16}a^{22}-\frac{55\!\cdots\!29}{82\!\cdots\!16}a^{21}+\frac{58\!\cdots\!17}{15\!\cdots\!04}a^{20}+\frac{10\!\cdots\!51}{15\!\cdots\!04}a^{19}-\frac{36\!\cdots\!77}{15\!\cdots\!04}a^{18}+\frac{60\!\cdots\!23}{15\!\cdots\!04}a^{17}+\frac{28\!\cdots\!11}{39\!\cdots\!76}a^{16}+\frac{32\!\cdots\!81}{31\!\cdots\!08}a^{15}-\frac{25\!\cdots\!99}{62\!\cdots\!16}a^{14}+\frac{45\!\cdots\!75}{44\!\cdots\!44}a^{13}-\frac{51\!\cdots\!45}{31\!\cdots\!08}a^{12}+\frac{21\!\cdots\!53}{11\!\cdots\!88}a^{11}-\frac{11\!\cdots\!99}{78\!\cdots\!52}a^{10}+\frac{10\!\cdots\!73}{98\!\cdots\!44}a^{9}-\frac{52\!\cdots\!23}{78\!\cdots\!52}a^{8}+\frac{16\!\cdots\!25}{39\!\cdots\!76}a^{7}-\frac{41\!\cdots\!55}{19\!\cdots\!88}a^{6}+\frac{56\!\cdots\!03}{49\!\cdots\!72}a^{5}-\frac{11\!\cdots\!21}{33\!\cdots\!32}a^{4}+\frac{30\!\cdots\!97}{14\!\cdots\!92}a^{3}-\frac{46\!\cdots\!43}{98\!\cdots\!44}a^{2}+\frac{27\!\cdots\!91}{49\!\cdots\!72}a-\frac{10\!\cdots\!29}{31\!\cdots\!68}$, $\frac{50\!\cdots\!71}{89\!\cdots\!88}a^{31}-\frac{21\!\cdots\!19}{62\!\cdots\!16}a^{30}-\frac{15\!\cdots\!17}{62\!\cdots\!16}a^{29}+\frac{26\!\cdots\!43}{62\!\cdots\!16}a^{28}+\frac{42\!\cdots\!57}{62\!\cdots\!16}a^{27}-\frac{38\!\cdots\!47}{62\!\cdots\!16}a^{26}-\frac{16\!\cdots\!53}{56\!\cdots\!68}a^{25}+\frac{93\!\cdots\!77}{22\!\cdots\!72}a^{24}+\frac{33\!\cdots\!43}{62\!\cdots\!16}a^{23}-\frac{20\!\cdots\!37}{62\!\cdots\!16}a^{22}-\frac{28\!\cdots\!41}{16\!\cdots\!32}a^{21}+\frac{34\!\cdots\!63}{28\!\cdots\!28}a^{20}+\frac{28\!\cdots\!51}{14\!\cdots\!64}a^{19}-\frac{26\!\cdots\!61}{35\!\cdots\!16}a^{18}+\frac{46\!\cdots\!25}{22\!\cdots\!72}a^{17}+\frac{12\!\cdots\!19}{56\!\cdots\!68}a^{16}+\frac{20\!\cdots\!77}{62\!\cdots\!16}a^{15}-\frac{76\!\cdots\!71}{57\!\cdots\!56}a^{14}+\frac{10\!\cdots\!05}{31\!\cdots\!08}a^{13}-\frac{86\!\cdots\!61}{15\!\cdots\!04}a^{12}+\frac{26\!\cdots\!53}{41\!\cdots\!08}a^{11}-\frac{85\!\cdots\!97}{15\!\cdots\!04}a^{10}+\frac{31\!\cdots\!53}{78\!\cdots\!52}a^{9}-\frac{19\!\cdots\!57}{78\!\cdots\!52}a^{8}+\frac{30\!\cdots\!61}{19\!\cdots\!88}a^{7}-\frac{31\!\cdots\!97}{39\!\cdots\!76}a^{6}+\frac{83\!\cdots\!77}{19\!\cdots\!88}a^{5}-\frac{45\!\cdots\!77}{30\!\cdots\!12}a^{4}+\frac{75\!\cdots\!01}{98\!\cdots\!44}a^{3}-\frac{27\!\cdots\!69}{12\!\cdots\!18}a^{2}+\frac{16\!\cdots\!66}{61\!\cdots\!59}a-\frac{10\!\cdots\!35}{49\!\cdots\!72}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 15835487316233.826 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 15835487316233.826 \cdot 420}{6\cdot\sqrt{323436686508763086889139574016939351080960000000000000000}}\cr\approx \mathstrut & 0.363674396584225 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.2.0.1}{2} }^{16}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.4.0.1}{4} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{16}$ | ${\href{/padicField/37.8.0.1}{8} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
\(3\) | 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(5\) | 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(29\) | 29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(769\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |