Normalized defining polynomial
\( x^{32} - 31 x^{28} + 336 x^{24} + 8959 x^{20} - 487729 x^{16} + 5599375 x^{12} + 131250000 x^{8} - 7568359375 x^{4} + 152587890625 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{9} a^{16} - \frac{2}{9} a^{12} + \frac{4}{9} a^{8} + \frac{1}{9} a^{4} - \frac{2}{9}$, $\frac{1}{45} a^{17} - \frac{11}{45} a^{13} - \frac{14}{45} a^{9} + \frac{19}{45} a^{5} + \frac{16}{45} a$, $\frac{1}{225} a^{18} - \frac{56}{225} a^{14} - \frac{14}{225} a^{10} + \frac{109}{225} a^{6} - \frac{29}{225} a^{2}$, $\frac{1}{1125} a^{19} - \frac{281}{1125} a^{15} + \frac{211}{1125} a^{11} + \frac{334}{1125} a^{7} - \frac{479}{1125} a^{3}$, $\frac{1}{2743475625} a^{20} + \frac{311}{5625} a^{16} + \frac{359}{5625} a^{12} + \frac{2621}{5625} a^{8} - \frac{1876}{5625} a^{4} - \frac{1454228}{4389561}$, $\frac{1}{13717378125} a^{21} + \frac{311}{28125} a^{17} + \frac{359}{28125} a^{13} - \frac{8629}{28125} a^{9} - \frac{13126}{28125} a^{5} + \frac{2935333}{21947805} a$, $\frac{1}{68586890625} a^{22} + \frac{311}{140625} a^{18} + \frac{56609}{140625} a^{14} + \frac{19496}{140625} a^{10} + \frac{14999}{140625} a^{6} + \frac{2935333}{109739025} a^{2}$, $\frac{1}{342934453125} a^{23} + \frac{311}{703125} a^{19} - \frac{84016}{703125} a^{15} + \frac{300746}{703125} a^{11} + \frac{296249}{703125} a^{7} - \frac{216542717}{548695125} a^{3}$, $\frac{1}{1714672265625} a^{24} - \frac{31}{1714672265625} a^{20} - \frac{136516}{3515625} a^{16} + \frac{1693871}{3515625} a^{12} + \frac{1171874}{3515625} a^{8} + \frac{914500834}{2743475625} a^{4} + \frac{487841}{1463187}$, $\frac{1}{8573361328125} a^{25} - \frac{31}{8573361328125} a^{21} - \frac{136516}{17578125} a^{17} - \frac{5337379}{17578125} a^{13} + \frac{4687499}{17578125} a^{9} + \frac{914500834}{13717378125} a^{5} + \frac{1951028}{7315935} a$, $\frac{1}{42866806640625} a^{26} - \frac{31}{42866806640625} a^{22} - \frac{136516}{87890625} a^{18} - \frac{40493629}{87890625} a^{14} + \frac{22265624}{87890625} a^{10} - \frac{12802877291}{68586890625} a^{6} + \frac{16582898}{36579675} a^{2}$, $\frac{1}{214334033203125} a^{27} - \frac{31}{214334033203125} a^{23} - \frac{136516}{439453125} a^{19} + \frac{135287621}{439453125} a^{15} - \frac{153515626}{439453125} a^{11} + \frac{55784013334}{342934453125} a^{7} + \frac{53162573}{182898375} a^{3}$, $\frac{1}{1071670166015625} a^{28} - \frac{31}{1071670166015625} a^{24} + \frac{112}{357223388671875} a^{20} + \frac{65756371}{2197265625} a^{16} + \frac{488281249}{2197265625} a^{12} - \frac{254025517847}{571557421875} a^{8} - \frac{304830289}{2743475625} a^{4} + \frac{975427}{4389561}$, $\frac{1}{5358350830078125} a^{29} - \frac{31}{5358350830078125} a^{25} + \frac{112}{1786116943359375} a^{21} + \frac{65756371}{10986328125} a^{17} - \frac{3906250001}{10986328125} a^{13} - \frac{254025517847}{2857787109375} a^{9} - \frac{304830289}{13717378125} a^{5} + \frac{5364988}{21947805} a$, $\frac{1}{26791754150390625} a^{30} - \frac{31}{26791754150390625} a^{26} + \frac{112}{8930584716796875} a^{22} + \frac{65756371}{54931640625} a^{18} + \frac{7080078124}{54931640625} a^{14} - \frac{3111812627222}{14288935546875} a^{10} + \frac{13412547836}{68586890625} a^{6} + \frac{5364988}{109739025} a^{2}$, $\frac{1}{133958770751953125} a^{31} - \frac{31}{133958770751953125} a^{27} + \frac{112}{44652923583984375} a^{23} + \frac{65756371}{274658203125} a^{19} - \frac{102783203126}{274658203125} a^{15} + \frac{11177122919653}{71444677734375} a^{11} + \frac{13412547836}{342934453125} a^{7} + \frac{5364988}{548695125} a^{3}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{831041}{133958770751953125} a^{31} + \frac{25762271}{133958770751953125} a^{27} - \frac{93076592}{44652923583984375} a^{23} - \frac{77836}{274658203125} a^{19} + \frac{831041}{274658203125} a^{15} - \frac{7445296319}{214334033203125} a^{11} - \frac{93076592}{114311484375} a^{7} + \frac{25762271}{548695125} a^{3} \) (order $40$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |