Properties

Label 32.0.313...448.1
Degree $32$
Signature $[0, 16]$
Discriminant $3.139\times 10^{57}$
Root discriminant \(62.63\)
Ramified prime $2$
Class number $21121$ (GRH)
Class group [21121] (GRH)
Galois group $C_{32}$ (as 32T33)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 32*x^30 + 464*x^28 + 4032*x^26 + 23400*x^24 + 95680*x^22 + 283360*x^20 + 615296*x^18 + 980628*x^16 + 1136960*x^14 + 940576*x^12 + 537472*x^10 + 201552*x^8 + 45696*x^6 + 5440*x^4 + 256*x^2 + 2)
 
gp: K = bnfinit(y^32 + 32*y^30 + 464*y^28 + 4032*y^26 + 23400*y^24 + 95680*y^22 + 283360*y^20 + 615296*y^18 + 980628*y^16 + 1136960*y^14 + 940576*y^12 + 537472*y^10 + 201552*y^8 + 45696*y^6 + 5440*y^4 + 256*y^2 + 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 + 32*x^30 + 464*x^28 + 4032*x^26 + 23400*x^24 + 95680*x^22 + 283360*x^20 + 615296*x^18 + 980628*x^16 + 1136960*x^14 + 940576*x^12 + 537472*x^10 + 201552*x^8 + 45696*x^6 + 5440*x^4 + 256*x^2 + 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 + 32*x^30 + 464*x^28 + 4032*x^26 + 23400*x^24 + 95680*x^22 + 283360*x^20 + 615296*x^18 + 980628*x^16 + 1136960*x^14 + 940576*x^12 + 537472*x^10 + 201552*x^8 + 45696*x^6 + 5440*x^4 + 256*x^2 + 2)
 

\( x^{32} + 32 x^{30} + 464 x^{28} + 4032 x^{26} + 23400 x^{24} + 95680 x^{22} + 283360 x^{20} + 615296 x^{18} + \cdots + 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3138550867693340381917894711603833208051177722232017256448\) \(\medspace = 2^{191}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(62.63\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{191/32}\approx 62.628611973612806$
Ramified primes:   \(2\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{2}) \)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(128=2^{7}\)
Dirichlet character group:    $\lbrace$$\chi_{128}(1,·)$, $\chi_{128}(3,·)$, $\chi_{128}(9,·)$, $\chi_{128}(11,·)$, $\chi_{128}(17,·)$, $\chi_{128}(19,·)$, $\chi_{128}(25,·)$, $\chi_{128}(27,·)$, $\chi_{128}(33,·)$, $\chi_{128}(35,·)$, $\chi_{128}(41,·)$, $\chi_{128}(43,·)$, $\chi_{128}(49,·)$, $\chi_{128}(51,·)$, $\chi_{128}(57,·)$, $\chi_{128}(59,·)$, $\chi_{128}(65,·)$, $\chi_{128}(67,·)$, $\chi_{128}(73,·)$, $\chi_{128}(75,·)$, $\chi_{128}(81,·)$, $\chi_{128}(83,·)$, $\chi_{128}(89,·)$, $\chi_{128}(91,·)$, $\chi_{128}(97,·)$, $\chi_{128}(99,·)$, $\chi_{128}(105,·)$, $\chi_{128}(107,·)$, $\chi_{128}(113,·)$, $\chi_{128}(115,·)$, $\chi_{128}(121,·)$, $\chi_{128}(123,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{21121}$, which has order $21121$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{20}+20a^{18}+170a^{16}+800a^{14}+2275a^{12}+4004a^{10}+4290a^{8}+2640a^{6}+825a^{4}+100a^{2}+3$, $a^{10}+10a^{8}+35a^{6}+50a^{4}+25a^{2}+3$, $a^{4}+4a^{2}+1$, $a^{30}+30a^{28}+405a^{26}+3250a^{24}+17250a^{22}+63756a^{20}+168245a^{18}+319770a^{16}+436050a^{14}+419900a^{12}+277134a^{10}+119340a^{8}+30940a^{6}+4200a^{4}+225a^{2}+1$, $a^{18}+18a^{16}+135a^{14}+546a^{12}+1287a^{10}+1782a^{8}+1386a^{6}+540a^{4}+81a^{2}+1$, $a^{30}+31a^{28}+432a^{26}+3573a^{24}+19503a^{22}+73900a^{20}+199065a^{18}+383911a^{16}+526932a^{14}+505257a^{12}+327471a^{10}+136135a^{8}+33397a^{6}+4179a^{4}+188a^{2}-1$, $a^{26}+26a^{24}+299a^{22}+2002a^{20}+8645a^{18}+25194a^{16}+50388a^{14}+68952a^{12}+63206a^{10}+37180a^{8}+13013a^{6}+2366a^{4}+169a^{2}+3$, $a^{26}+26a^{24}+299a^{22}+2002a^{20}+8645a^{18}+25194a^{16}+50388a^{14}+68952a^{12}+63206a^{10}+37180a^{8}+13013a^{6}+2366a^{4}+169a^{2}+1$, $a^{28}+28a^{26}+350a^{24}+2576a^{22}+12397a^{20}+40964a^{18}+94962a^{16}+155040a^{14}+176358a^{12}+136136a^{10}+68068a^{8}+20384a^{6}+3185a^{4}+196a^{2}+1$, $a^{24}+24a^{22}+252a^{20}+1520a^{18}+5814a^{16}+14688a^{14}+24752a^{12}+27456a^{10}+19305a^{8}+8008a^{6}+1716a^{4}+144a^{2}+3$, $a^{24}+24a^{22}+252a^{20}+1520a^{18}+5814a^{16}+14688a^{14}+24752a^{12}+27456a^{10}+19305a^{8}+8008a^{6}+1716a^{4}+144a^{2}+1$, $a^{8}+8a^{6}+20a^{4}+16a^{2}+1$, $a^{30}+30a^{28}+405a^{26}+3250a^{24}+17250a^{22}+63757a^{20}+168265a^{18}+319940a^{16}+436850a^{14}+422175a^{12}+281139a^{10}+123640a^{8}+33615a^{6}+5075a^{4}+350a^{2}+7$, $a^{30}+30a^{28}+405a^{26}+3250a^{24}+17250a^{22}+63756a^{20}+168245a^{18}+319770a^{16}+436050a^{14}+419900a^{12}+277134a^{10}+119340a^{8}+30940a^{6}+4199a^{4}+221a^{2}+1$, $a^{26}+26a^{24}+299a^{22}+2002a^{20}+8645a^{18}+25194a^{16}+50388a^{14}+68953a^{12}+63218a^{10}+37234a^{8}+13125a^{6}+2471a^{4}+205a^{2}+3$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 211230625393.46567 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 211230625393.46567 \cdot 21121}{2\cdot\sqrt{3138550867693340381917894711603833208051177722232017256448}}\cr\approx \mathstrut & 0.234938760729838 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 + 32*x^30 + 464*x^28 + 4032*x^26 + 23400*x^24 + 95680*x^22 + 283360*x^20 + 615296*x^18 + 980628*x^16 + 1136960*x^14 + 940576*x^12 + 537472*x^10 + 201552*x^8 + 45696*x^6 + 5440*x^4 + 256*x^2 + 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 + 32*x^30 + 464*x^28 + 4032*x^26 + 23400*x^24 + 95680*x^22 + 283360*x^20 + 615296*x^18 + 980628*x^16 + 1136960*x^14 + 940576*x^12 + 537472*x^10 + 201552*x^8 + 45696*x^6 + 5440*x^4 + 256*x^2 + 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 + 32*x^30 + 464*x^28 + 4032*x^26 + 23400*x^24 + 95680*x^22 + 283360*x^20 + 615296*x^18 + 980628*x^16 + 1136960*x^14 + 940576*x^12 + 537472*x^10 + 201552*x^8 + 45696*x^6 + 5440*x^4 + 256*x^2 + 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 + 32*x^30 + 464*x^28 + 4032*x^26 + 23400*x^24 + 95680*x^22 + 283360*x^20 + 615296*x^18 + 980628*x^16 + 1136960*x^14 + 940576*x^12 + 537472*x^10 + 201552*x^8 + 45696*x^6 + 5440*x^4 + 256*x^2 + 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{32}$ (as 32T33):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 32
The 32 conjugacy class representatives for $C_{32}$
Character table for $C_{32}$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), \(\Q(\zeta_{64})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $32$ $32$ $16^{2}$ $32$ $32$ ${\href{/padicField/17.8.0.1}{8} }^{4}$ $32$ $16^{2}$ $32$ ${\href{/padicField/31.4.0.1}{4} }^{8}$ $32$ $16^{2}$ $32$ ${\href{/padicField/47.8.0.1}{8} }^{4}$ $32$ $32$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $32$$32$$1$$191$