Normalized defining polynomial
\( x^{32} + 193 x^{30} + 15440 x^{28} + 671061 x^{26} + 17579019 x^{24} + 293049077 x^{22} + 3201313195 x^{20} + 23224085650 x^{18} + 112150227566 x^{16} + 358606414532 x^{14} + 750483998897 x^{12} + 1008442843815 x^{10} + 844182228126 x^{8} + 419409562413 x^{6} + 114648303766 x^{4} + 15477116409 x^{2} + 780515353 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(305658473945657028577927750534391762814465590760665601328732812917726751722831872=2^{32}\cdot 193^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $327.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(772=2^{2}\cdot 193\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{772}(1,·)$, $\chi_{772}(363,·)$, $\chi_{772}(389,·)$, $\chi_{772}(769,·)$, $\chi_{772}(9,·)$, $\chi_{772}(651,·)$, $\chi_{772}(529,·)$, $\chi_{772}(23,·)$, $\chi_{772}(413,·)$, $\chi_{772}(129,·)$, $\chi_{772}(555,·)$, $\chi_{772}(257,·)$, $\chi_{772}(429,·)$, $\chi_{772}(385,·)$, $\chi_{772}(305,·)$, $\chi_{772}(179,·)$, $\chi_{772}(571,·)$, $\chi_{772}(151,·)$, $\chi_{772}(319,·)$, $\chi_{772}(67,·)$, $\chi_{772}(455,·)$, $\chi_{772}(587,·)$, $\chi_{772}(207,·)$, $\chi_{772}(81,·)$, $\chi_{772}(729,·)$, $\chi_{772}(603,·)$, $\chi_{772}(745,·)$, $\chi_{772}(235,·)$, $\chi_{772}(629,·)$, $\chi_{772}(377,·)$, $\chi_{772}(507,·)$, $\chi_{772}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{7} a^{24} + \frac{1}{7} a^{22} + \frac{1}{7} a^{20} - \frac{2}{7} a^{16} + \frac{1}{7} a^{14} - \frac{1}{7} a^{10} - \frac{3}{7} a^{8} + \frac{3}{7} a^{6} - \frac{1}{7} a^{4} + \frac{2}{7} a^{2} + \frac{1}{7}$, $\frac{1}{7} a^{25} + \frac{1}{7} a^{23} + \frac{1}{7} a^{21} - \frac{2}{7} a^{17} + \frac{1}{7} a^{15} - \frac{1}{7} a^{11} - \frac{3}{7} a^{9} + \frac{3}{7} a^{7} - \frac{1}{7} a^{5} + \frac{2}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{7} a^{26} - \frac{1}{7} a^{20} - \frac{2}{7} a^{18} + \frac{3}{7} a^{16} - \frac{1}{7} a^{14} - \frac{1}{7} a^{12} - \frac{2}{7} a^{10} - \frac{1}{7} a^{8} + \frac{3}{7} a^{6} + \frac{3}{7} a^{4} - \frac{1}{7} a^{2} - \frac{1}{7}$, $\frac{1}{7} a^{27} - \frac{1}{7} a^{21} - \frac{2}{7} a^{19} + \frac{3}{7} a^{17} - \frac{1}{7} a^{15} - \frac{1}{7} a^{13} - \frac{2}{7} a^{11} - \frac{1}{7} a^{9} + \frac{3}{7} a^{7} + \frac{3}{7} a^{5} - \frac{1}{7} a^{3} - \frac{1}{7} a$, $\frac{1}{763} a^{28} - \frac{33}{763} a^{26} + \frac{4}{763} a^{24} + \frac{157}{763} a^{22} + \frac{27}{109} a^{20} + \frac{328}{763} a^{18} - \frac{129}{763} a^{16} + \frac{43}{763} a^{14} - \frac{228}{763} a^{12} - \frac{114}{763} a^{10} + \frac{59}{763} a^{8} - \frac{13}{109} a^{6} - \frac{83}{763} a^{4} + \frac{110}{763} a^{2} - \frac{264}{763}$, $\frac{1}{763} a^{29} - \frac{33}{763} a^{27} + \frac{4}{763} a^{25} + \frac{157}{763} a^{23} + \frac{27}{109} a^{21} + \frac{328}{763} a^{19} - \frac{129}{763} a^{17} + \frac{43}{763} a^{15} - \frac{228}{763} a^{13} - \frac{114}{763} a^{11} + \frac{59}{763} a^{9} - \frac{13}{109} a^{7} - \frac{83}{763} a^{5} + \frac{110}{763} a^{3} - \frac{264}{763} a$, $\frac{1}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{30} - \frac{4662056140937809989050490912662613038749833811146616142805731412620967599051151}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{28} - \frac{770277668950269552028918341396402069402132950915708525527375724142847162462716922}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{26} + \frac{3632724510423946424839693607775455289455665541098341568867664043546024085892183693}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{24} + \frac{11522765651474090984427450103760636744289651310182184254069492598500043605081363811}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{22} + \frac{24251561059322479983449814765127680313142186793567486994995147437636585725978538284}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{20} - \frac{1275764779056126743184916375067953679035618212903688366950359933305639287304242769}{8493637930565048463071275852272985089004998612221577141675642160705081176292975357} a^{18} - \frac{16307367118260329318889971188804688518020362807851001765829442878858288595987999700}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{16} - \frac{24568298887201786765243842778104990295655436977672827249216307798348906512617513705}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{14} - \frac{25041784402544580200131315565782857320978452072559544824924351068650918206341395487}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{12} + \frac{22175211652845879892021170920189519130026858332109517682251961477611052383595076028}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{10} + \frac{23002219393640307912637991420189713398460269477915092566200783801323873310603581996}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{8} - \frac{8456755268764160512005248083478964793120433448824658648163859502721702192917088698}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{6} - \frac{2028723398098003761597007090168383923130117323238989841570400465167130041890313724}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{4} + \frac{17642691412373400353369756999367493492809625125592334175822480640227499248256262386}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499} a^{2} - \frac{21017546857873862580620473314236702860240962601728601603708201416229499553696577226}{59455465513955339241498930965910895623034990285551039991729495124935568234050827499}$, $\frac{1}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{31} + \frac{66152205861746458017052355000644808401321285228355082680028021740501268194536142226}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{29} - \frac{5513452987740733329368335433653803100433242745993259514836016409293693010619770438307}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{27} + \frac{3767639023574773496518370966710475196016955234025053041123915544141695025367138804285}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{25} + \frac{4635376442358094435137565746396993268150827364771070634791836636411338767959552964396}{17080705878366312459236335738920973013989052209177591631909716385177918245525173442927} a^{23} - \frac{8157563451033175286994863426323491722519398544207072083355090413404413406554325984307}{17080705878366312459236335738920973013989052209177591631909716385177918245525173442927} a^{21} + \frac{26268593168188234065662704270980513779930536424887627469938550015874654924191127445696}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{19} - \frac{51519857619254314565684815816248750014646752865056253340708939877762755661377590276396}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{17} - \frac{31672486614442705574734914642721726183127473293536349739858653541129386329466577123271}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{15} + \frac{177349335236692494663804892569230006819936554611439453339105449241751945312973153826}{17080705878366312459236335738920973013989052209177591631909716385177918245525173442927} a^{13} - \frac{6143738386234779393373152367049138592088207363574945125129768340286349161540354961116}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{11} - \frac{5058254261413963252967856793779159063419492319293200160294231320225855370505169841004}{17080705878366312459236335738920973013989052209177591631909716385177918245525173442927} a^{9} + \frac{40915605106436505674622168487697579759830743705642705337441565062770098045424055112134}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{7} - \frac{4248912150335137888496360888732687272460612009339376965843958207063860955545079429750}{17080705878366312459236335738920973013989052209177591631909716385177918245525173442927} a^{5} - \frac{1580953475060488702581558904554580112937810067807670556296432555386054522143031714209}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a^{3} - \frac{1323037695314859135694913576209918426274777859955951835184059622179726759871855524383}{119564941148564187214654350172446811097923365464243141423368014696245427718676214100489} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{193}) \), 4.4.7189057.1, 8.8.9974730326005057.1, 16.16.19202582299769315484813817587637057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | $32$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | $32$ | $32$ | $32$ | $32$ | $16^{2}$ | $32$ | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | $32$ | $32$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 193 | Data not computed | ||||||