Normalized defining polynomial
\(x^{32} + 46 x^{30} + 899 x^{28} + 9779 x^{26} + 65207 x^{24} + 277346 x^{22} + 763587 x^{20} + 1370784 x^{18} + 1627006 x^{16} + 1296861 x^{14} + 701262 x^{12} + 257219 x^{10} + 63092 x^{8} + 10001 x^{6} + 959 x^{4} + 49 x^{2} + 1\)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(301756981416745756154944013144439800625000000000000\)\(\medspace = 2^{12}\cdot 3^{24}\cdot 5^{16}\cdot 41^{4}\cdot 167^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $37.80$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 41, 167$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{30} a^{24} + \frac{1}{6} a^{22} + \frac{7}{30} a^{20} - \frac{1}{15} a^{18} + \frac{2}{15} a^{16} - \frac{1}{2} a^{15} - \frac{7}{30} a^{14} - \frac{1}{2} a^{13} + \frac{1}{15} a^{12} - \frac{1}{2} a^{11} + \frac{1}{15} a^{10} - \frac{1}{2} a^{9} - \frac{11}{30} a^{8} - \frac{4}{15} a^{6} - \frac{1}{2} a^{5} + \frac{7}{30} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{30}$, $\frac{1}{30} a^{25} + \frac{1}{6} a^{23} + \frac{7}{30} a^{21} - \frac{1}{15} a^{19} + \frac{2}{15} a^{17} - \frac{7}{30} a^{15} - \frac{13}{30} a^{13} + \frac{1}{15} a^{11} - \frac{11}{30} a^{9} + \frac{7}{30} a^{7} - \frac{1}{2} a^{6} - \frac{4}{15} a^{5} - \frac{1}{3} a^{3} - \frac{7}{15} a - \frac{1}{2}$, $\frac{1}{30} a^{26} - \frac{1}{10} a^{22} - \frac{7}{30} a^{20} - \frac{1}{30} a^{18} + \frac{1}{10} a^{16} - \frac{1}{2} a^{15} - \frac{4}{15} a^{14} - \frac{1}{2} a^{13} + \frac{7}{30} a^{12} - \frac{1}{2} a^{11} - \frac{1}{5} a^{10} + \frac{1}{15} a^{8} - \frac{13}{30} a^{6} + \frac{1}{5} a^{2} - \frac{1}{6}$, $\frac{1}{30} a^{27} - \frac{1}{10} a^{23} - \frac{7}{30} a^{21} - \frac{1}{30} a^{19} + \frac{1}{10} a^{17} - \frac{4}{15} a^{15} - \frac{4}{15} a^{13} - \frac{1}{5} a^{11} - \frac{1}{2} a^{10} + \frac{1}{15} a^{9} + \frac{1}{15} a^{7} - \frac{1}{2} a^{5} - \frac{3}{10} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{60} a^{28} - \frac{1}{60} a^{26} - \frac{1}{60} a^{24} - \frac{3}{20} a^{22} + \frac{1}{12} a^{20} + \frac{1}{5} a^{16} - \frac{7}{30} a^{14} - \frac{2}{5} a^{12} - \frac{1}{2} a^{11} + \frac{9}{20} a^{10} + \frac{23}{60} a^{8} + \frac{9}{20} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{7}{30} a^{2} + \frac{7}{60}$, $\frac{1}{60} a^{29} - \frac{1}{60} a^{27} - \frac{1}{60} a^{25} - \frac{3}{20} a^{23} + \frac{1}{12} a^{21} + \frac{1}{5} a^{17} - \frac{7}{30} a^{15} - \frac{2}{5} a^{13} - \frac{1}{2} a^{12} + \frac{9}{20} a^{11} + \frac{23}{60} a^{9} + \frac{9}{20} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{7}{30} a^{3} + \frac{7}{60} a$, $\frac{1}{1234630260} a^{30} - \frac{814864}{308657565} a^{28} - \frac{1638437}{123463026} a^{26} - \frac{2038303}{205771710} a^{24} + \frac{44242658}{308657565} a^{22} + \frac{53917505}{246926052} a^{20} - \frac{3209743}{617315130} a^{18} - \frac{71832691}{617315130} a^{16} - \frac{1}{2} a^{15} - \frac{20986427}{617315130} a^{14} + \frac{30269051}{1234630260} a^{12} - \frac{1}{2} a^{11} - \frac{43981384}{308657565} a^{10} - \frac{1}{2} a^{9} - \frac{105448051}{617315130} a^{8} + \frac{110764993}{411543420} a^{6} - \frac{1}{2} a^{5} - \frac{118873246}{308657565} a^{4} - \frac{1}{2} a^{3} - \frac{417748367}{1234630260} a^{2} - \frac{1}{2} a + \frac{106169621}{1234630260}$, $\frac{1}{1234630260} a^{31} - \frac{814864}{308657565} a^{29} - \frac{1638437}{123463026} a^{27} - \frac{2038303}{205771710} a^{25} + \frac{44242658}{308657565} a^{23} + \frac{53917505}{246926052} a^{21} - \frac{3209743}{617315130} a^{19} - \frac{71832691}{617315130} a^{17} - \frac{20986427}{617315130} a^{15} - \frac{1}{2} a^{14} - \frac{587046079}{1234630260} a^{13} - \frac{43981384}{308657565} a^{11} - \frac{105448051}{617315130} a^{9} - \frac{95006717}{411543420} a^{7} - \frac{1}{2} a^{6} + \frac{70911073}{617315130} a^{5} - \frac{1}{2} a^{4} + \frac{199566763}{1234630260} a^{3} - \frac{511145509}{1234630260} a - \frac{1}{2}$
Class group and class number
$C_{18}$, which has order $18$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{9063389651}{137181140} a^{31} + \frac{618142211371}{205771710} a^{29} + \frac{2378588856203}{41154342} a^{27} + \frac{126609793292381}{205771710} a^{25} + \frac{136491494365708}{34295285} a^{23} + \frac{2221875466558009}{137181140} a^{21} + \frac{1718923032115505}{41154342} a^{19} + \frac{4669676456062973}{68590570} a^{17} + \frac{4841924958186281}{68590570} a^{15} + \frac{3869878528831055}{82308684} a^{13} + \frac{1383880386661479}{68590570} a^{11} + \frac{377883484606723}{68590570} a^{9} + \frac{379318992170459}{411543420} a^{7} + \frac{3582071748535}{41154342} a^{5} + \frac{1609329774529}{411543420} a^{3} + \frac{8127275673}{137181140} a + \frac{1}{2} \) (order $6$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 617565056600.4795 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 1536 |
The 80 conjugacy class representatives for t32n96908 are not computed |
Character table for t32n96908 is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
$3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
$5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$41$ | 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
$167$ | 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |