Properties

Label 32.0.290...176.1
Degree $32$
Signature $[0, 16]$
Discriminant $2.908\times 10^{52}$
Root discriminant \(43.60\)
Ramified primes $2,3,7,13,97$
Class number $108$ (GRH)
Class group [3, 36] (GRH)
Galois group $D_4^2:C_2^3$ (as 32T12882)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256)
 
gp: K = bnfinit(y^32 - 4*y^31 + 42*y^30 - 134*y^29 + 754*y^28 - 1990*y^27 + 7802*y^26 - 17690*y^25 + 53094*y^24 - 108182*y^23 + 256762*y^22 - 492454*y^21 + 925356*y^20 - 1701130*y^19 + 2638782*y^18 - 4227686*y^17 + 6633341*y^16 - 6962910*y^15 + 13367372*y^14 - 10724860*y^13 + 11545802*y^12 - 23539896*y^11 + 3955128*y^10 - 7435992*y^9 + 19530996*y^8 + 2533056*y^7 - 5443776*y^6 - 1219904*y^5 + 651552*y^4 + 141056*y^3 - 11264*y^2 - 2816*y + 256, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256)
 

\( x^{32} - 4 x^{31} + 42 x^{30} - 134 x^{29} + 754 x^{28} - 1990 x^{27} + 7802 x^{26} - 17690 x^{25} + \cdots + 256 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(29079187190356527093230483395294879034427143331250176\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 7^{16}\cdot 13^{8}\cdot 97^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(43.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}7^{1/2}13^{1/2}97^{1/2}\approx 460.2694862795056$
Ramified primes:   \(2\), \(3\), \(7\), \(13\), \(97\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{8}$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{9}$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{10}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{11}$, $\frac{1}{8}a^{20}-\frac{1}{8}a^{18}-\frac{1}{4}a^{14}-\frac{1}{8}a^{12}+\frac{1}{8}a^{10}+\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{21}-\frac{1}{8}a^{19}-\frac{1}{4}a^{15}-\frac{1}{8}a^{13}+\frac{1}{8}a^{11}+\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{16}a^{22}-\frac{1}{16}a^{21}-\frac{1}{16}a^{20}+\frac{1}{16}a^{19}-\frac{1}{8}a^{18}-\frac{1}{8}a^{17}-\frac{1}{8}a^{16}+\frac{1}{8}a^{15}-\frac{1}{16}a^{14}+\frac{1}{16}a^{13}+\frac{1}{16}a^{12}+\frac{3}{16}a^{11}-\frac{1}{8}a^{10}+\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{8}a^{7}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{16}a^{23}+\frac{1}{16}a^{19}-\frac{3}{16}a^{15}-\frac{1}{4}a^{12}-\frac{1}{16}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{3}{8}a^{7}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{32}a^{24}-\frac{1}{16}a^{21}+\frac{1}{32}a^{20}+\frac{1}{16}a^{19}-\frac{1}{8}a^{18}-\frac{3}{32}a^{16}+\frac{1}{8}a^{15}-\frac{1}{4}a^{14}+\frac{3}{16}a^{13}-\frac{1}{32}a^{12}+\frac{1}{16}a^{11}-\frac{1}{8}a^{10}+\frac{1}{8}a^{9}+\frac{3}{16}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{32}a^{25}-\frac{1}{32}a^{21}-\frac{1}{16}a^{19}-\frac{1}{8}a^{18}+\frac{1}{32}a^{17}-\frac{1}{8}a^{15}+\frac{1}{8}a^{14}+\frac{1}{32}a^{13}+\frac{1}{8}a^{12}+\frac{1}{16}a^{11}+\frac{1}{16}a^{9}-\frac{1}{8}a^{8}-\frac{1}{8}a^{7}-\frac{1}{4}a^{6}+\frac{3}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{32}a^{26}-\frac{1}{32}a^{22}-\frac{1}{16}a^{20}-\frac{1}{8}a^{19}+\frac{1}{32}a^{18}-\frac{1}{8}a^{16}+\frac{1}{8}a^{15}+\frac{1}{32}a^{14}+\frac{1}{8}a^{13}+\frac{1}{16}a^{12}+\frac{1}{16}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}+\frac{3}{8}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{32}a^{27}-\frac{1}{32}a^{23}-\frac{1}{16}a^{21}+\frac{1}{32}a^{19}-\frac{1}{8}a^{18}-\frac{1}{8}a^{17}-\frac{1}{8}a^{16}+\frac{1}{32}a^{15}-\frac{1}{8}a^{14}+\frac{1}{16}a^{13}-\frac{1}{8}a^{12}+\frac{1}{16}a^{11}-\frac{1}{8}a^{9}+\frac{3}{8}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{64}a^{28}-\frac{1}{64}a^{26}-\frac{1}{64}a^{24}-\frac{1}{64}a^{22}-\frac{1}{16}a^{21}+\frac{3}{64}a^{20}-\frac{1}{16}a^{19}-\frac{5}{64}a^{18}-\frac{1}{16}a^{17}+\frac{5}{64}a^{16}-\frac{1}{4}a^{15}-\frac{15}{64}a^{14}-\frac{1}{16}a^{13}+\frac{1}{16}a^{11}-\frac{3}{32}a^{10}+\frac{1}{16}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{16}a^{6}+\frac{3}{8}a^{5}-\frac{3}{8}a^{4}+\frac{1}{4}a^{3}$, $\frac{1}{64}a^{29}-\frac{1}{64}a^{27}-\frac{1}{64}a^{25}-\frac{1}{64}a^{23}-\frac{1}{64}a^{21}-\frac{1}{64}a^{19}-\frac{1}{16}a^{18}-\frac{3}{64}a^{17}-\frac{1}{8}a^{16}-\frac{7}{64}a^{15}+\frac{1}{8}a^{14}+\frac{1}{16}a^{13}+\frac{3}{32}a^{11}-\frac{3}{16}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{16}a^{7}+\frac{1}{8}a^{6}-\frac{1}{8}a^{5}+\frac{1}{4}a^{3}$, $\frac{1}{18304}a^{30}-\frac{141}{18304}a^{29}-\frac{85}{18304}a^{28}+\frac{79}{18304}a^{27}-\frac{113}{18304}a^{26}+\frac{79}{18304}a^{25}-\frac{41}{18304}a^{24}-\frac{317}{18304}a^{23}+\frac{263}{18304}a^{22}+\frac{951}{18304}a^{21}+\frac{543}{18304}a^{20}+\frac{2095}{18304}a^{19}-\frac{127}{18304}a^{18}+\frac{1753}{18304}a^{17}+\frac{1433}{18304}a^{16}-\frac{209}{1664}a^{15}-\frac{371}{4576}a^{14}-\frac{447}{9152}a^{13}-\frac{779}{9152}a^{12}+\frac{1187}{9152}a^{11}+\frac{497}{4576}a^{10}+\frac{971}{4576}a^{9}-\frac{257}{4576}a^{8}-\frac{1231}{4576}a^{7}-\frac{49}{572}a^{6}+\frac{31}{104}a^{5}-\frac{101}{1144}a^{4}-\frac{277}{572}a^{3}+\frac{25}{286}a^{2}+\frac{42}{143}a+\frac{71}{143}$, $\frac{1}{65\!\cdots\!12}a^{31}+\frac{13\!\cdots\!03}{65\!\cdots\!12}a^{30}-\frac{16\!\cdots\!41}{65\!\cdots\!12}a^{29}+\frac{16\!\cdots\!03}{50\!\cdots\!24}a^{28}-\frac{20\!\cdots\!61}{65\!\cdots\!12}a^{27}-\frac{87\!\cdots\!45}{65\!\cdots\!12}a^{26}-\frac{41\!\cdots\!09}{50\!\cdots\!24}a^{25}+\frac{31\!\cdots\!03}{65\!\cdots\!12}a^{24}-\frac{11\!\cdots\!33}{65\!\cdots\!12}a^{23}+\frac{12\!\cdots\!35}{65\!\cdots\!12}a^{22}-\frac{21\!\cdots\!89}{65\!\cdots\!12}a^{21}+\frac{29\!\cdots\!19}{65\!\cdots\!12}a^{20}-\frac{62\!\cdots\!11}{65\!\cdots\!12}a^{19}-\frac{16\!\cdots\!07}{17\!\cdots\!76}a^{18}+\frac{48\!\cdots\!03}{59\!\cdots\!92}a^{17}-\frac{55\!\cdots\!87}{65\!\cdots\!12}a^{16}+\frac{20\!\cdots\!85}{40\!\cdots\!32}a^{15}-\frac{52\!\cdots\!17}{32\!\cdots\!56}a^{14}+\frac{77\!\cdots\!47}{32\!\cdots\!56}a^{13}+\frac{82\!\cdots\!33}{32\!\cdots\!56}a^{12}+\frac{17\!\cdots\!23}{16\!\cdots\!28}a^{11}+\frac{37\!\cdots\!49}{16\!\cdots\!28}a^{10}-\frac{40\!\cdots\!91}{16\!\cdots\!28}a^{9}-\frac{32\!\cdots\!09}{16\!\cdots\!28}a^{8}-\frac{11\!\cdots\!01}{51\!\cdots\!79}a^{7}+\frac{50\!\cdots\!57}{20\!\cdots\!16}a^{6}-\frac{30\!\cdots\!37}{10\!\cdots\!58}a^{5}+\frac{45\!\cdots\!95}{40\!\cdots\!32}a^{4}-\frac{10\!\cdots\!23}{20\!\cdots\!16}a^{3}+\frac{40\!\cdots\!39}{10\!\cdots\!58}a^{2}+\frac{16\!\cdots\!44}{51\!\cdots\!79}a+\frac{98\!\cdots\!02}{51\!\cdots\!79}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{3}\times C_{36}$, which has order $108$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $108$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{4591498334734831080560953229614554770490365419542399901166687162584772253}{17552959656522882700072450681495599658500747228582873145646838597114462504544} a^{31} + \frac{36503226430810646568709739596243054829477006835628653454795185093519120861}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{30} - \frac{385080415293921549347046297000945280645362764301513005568125492646464372859}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{29} + \frac{1222206927936335866240224863106622081038073607474888866701693088849497973689}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{28} - \frac{6906533112660985400453644843470880214636188513608172591756632233199770813743}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{27} + \frac{18145404188883832164924170217171940814914199482919206718295386235201902392815}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{26} - \frac{71430655394652205857215609061520820331929231191712285810848661604805829002557}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{25} + \frac{161317718558680552065438811190293372885390974013306648621081162966501645866735}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{24} - \frac{486028449067300649318375510004015852814480660642135979966162230179703799619079}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{23} + \frac{987162031980481405286995537868715010173704446313058541549813248734919354522331}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{22} - \frac{2350388211934763004916841998047541788309223997036066291454419552978038729111405}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{21} + \frac{4499593767862990860979724633151761094482864231427539584125344561509268309746347}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{20} - \frac{8469536995882850827487955242388091028272391563764107307506193651534982677643023}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{19} + \frac{420937107593800222892746630904137419282298232286891207338785893616077821384957}{948808630082317983787700036837599981540580931274749899764693978222403378624} a^{18} - \frac{24152592543466880087242816838251300298336472008281348994119926446928781581032687}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{17} + \frac{3526292236840251875465474309199018579135529741900922441638283307445358203583487}{3191447210276887763649536487544654483363772223378704208299425199475356819008} a^{16} - \frac{60843863485054683342161092028973604822126548509095779192281768796344174967275391}{35105919313045765400144901362991199317001494457165746291293677194228925009088} a^{15} + \frac{15962887426921945594225961091973628244332086939764235943091368145715270019460179}{8776479828261441350036225340747799829250373614291436572823419298557231252272} a^{14} - \frac{30851631371467328759674043039670440511489730077671199044330842739283644272495325}{8776479828261441350036225340747799829250373614291436572823419298557231252272} a^{13} + \frac{3058953117175444123074621211228548217949321033195494286655826770766824022752099}{1097059978532680168754528167593474978656296701786429571602927412319653906534} a^{12} - \frac{53995711408894679068572153313099880251460682810423608450205722555516148958631315}{17552959656522882700072450681495599658500747228582873145646838597114462504544} a^{11} + \frac{54367666527309424096415957071944168015907267711343132470468582549323513932466143}{8776479828261441350036225340747799829250373614291436572823419298557231252272} a^{10} - \frac{2181403603089773043998753724530799135072076997698440993802460818745654008445635}{2194119957065360337509056335186949957312593403572859143205854824639307813068} a^{9} + \frac{4693240703123231610769197662470589142453470272921682298874806458456249018229171}{2194119957065360337509056335186949957312593403572859143205854824639307813068} a^{8} - \frac{45006230288449275891812908790581168118964442272361396830664689102797913749085943}{8776479828261441350036225340747799829250373614291436572823419298557231252272} a^{7} - \frac{145679343113122207255681753981818530888511598299883567795570624203004312482467}{199465450642305485228096030471540905210235763961169013018714074967209801188} a^{6} + \frac{5386087057654869194278969751229518008272862607985733303053553326838233543603907}{4388239914130720675018112670373899914625186807145718286411709649278615626136} a^{5} + \frac{1584555165530073964214144375760112456049250809639782124163471515291454015944411}{4388239914130720675018112670373899914625186807145718286411709649278615626136} a^{4} - \frac{108219597697541074090824204684941960531702912572800526949087006833870882648427}{1097059978532680168754528167593474978656296701786429571602927412319653906534} a^{3} - \frac{42437797995408785411538811839108524478645279013804243284664071705548274441439}{1097059978532680168754528167593474978656296701786429571602927412319653906534} a^{2} - \frac{4117569097315229153233324860339259075118687198624566477951126456469545251975}{548529989266340084377264083796737489328148350893214785801463706159826953267} a + \frac{8756994494353265453662419985816138731141768035514807615576715265015673799}{49866362660576371307024007617885226302558940990292253254678518741802450297} \)  (order $12$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\!\cdots\!59}{17\!\cdots\!44}a^{31}-\frac{89\!\cdots\!77}{35\!\cdots\!88}a^{30}+\frac{93\!\cdots\!07}{35\!\cdots\!88}a^{29}-\frac{14\!\cdots\!37}{17\!\cdots\!44}a^{28}+\frac{16\!\cdots\!13}{35\!\cdots\!88}a^{27}-\frac{22\!\cdots\!65}{17\!\cdots\!44}a^{26}+\frac{17\!\cdots\!69}{35\!\cdots\!88}a^{25}-\frac{49\!\cdots\!31}{43\!\cdots\!36}a^{24}+\frac{11\!\cdots\!69}{35\!\cdots\!88}a^{23}-\frac{12\!\cdots\!37}{17\!\cdots\!44}a^{22}+\frac{57\!\cdots\!73}{35\!\cdots\!88}a^{21}-\frac{27\!\cdots\!03}{87\!\cdots\!72}a^{20}+\frac{20\!\cdots\!81}{35\!\cdots\!88}a^{19}-\frac{16\!\cdots\!46}{14\!\cdots\!91}a^{18}+\frac{59\!\cdots\!59}{35\!\cdots\!88}a^{17}-\frac{21\!\cdots\!41}{79\!\cdots\!52}a^{16}+\frac{14\!\cdots\!73}{35\!\cdots\!88}a^{15}-\frac{15\!\cdots\!73}{35\!\cdots\!88}a^{14}+\frac{47\!\cdots\!33}{54\!\cdots\!67}a^{13}-\frac{12\!\cdots\!41}{17\!\cdots\!44}a^{12}+\frac{13\!\cdots\!03}{17\!\cdots\!44}a^{11}-\frac{26\!\cdots\!31}{17\!\cdots\!44}a^{10}+\frac{25\!\cdots\!55}{87\!\cdots\!72}a^{9}-\frac{42\!\cdots\!73}{87\!\cdots\!72}a^{8}+\frac{10\!\cdots\!91}{87\!\cdots\!72}a^{7}+\frac{10\!\cdots\!39}{79\!\cdots\!52}a^{6}-\frac{73\!\cdots\!01}{21\!\cdots\!68}a^{5}-\frac{30\!\cdots\!51}{43\!\cdots\!36}a^{4}+\frac{42\!\cdots\!01}{10\!\cdots\!34}a^{3}+\frac{86\!\cdots\!39}{10\!\cdots\!34}a^{2}-\frac{31\!\cdots\!10}{54\!\cdots\!67}a-\frac{64\!\cdots\!33}{49\!\cdots\!97}$, $\frac{18\!\cdots\!25}{11\!\cdots\!84}a^{31}-\frac{13\!\cdots\!69}{23\!\cdots\!68}a^{30}+\frac{11\!\cdots\!39}{18\!\cdots\!36}a^{29}-\frac{42\!\cdots\!97}{23\!\cdots\!68}a^{28}+\frac{25\!\cdots\!55}{23\!\cdots\!68}a^{27}-\frac{56\!\cdots\!63}{21\!\cdots\!88}a^{26}+\frac{25\!\cdots\!87}{23\!\cdots\!68}a^{25}-\frac{53\!\cdots\!89}{23\!\cdots\!68}a^{24}+\frac{16\!\cdots\!03}{23\!\cdots\!68}a^{23}-\frac{31\!\cdots\!57}{23\!\cdots\!68}a^{22}+\frac{71\!\cdots\!09}{21\!\cdots\!88}a^{21}-\frac{14\!\cdots\!33}{23\!\cdots\!68}a^{20}+\frac{26\!\cdots\!15}{23\!\cdots\!68}a^{19}-\frac{11\!\cdots\!93}{58\!\cdots\!24}a^{18}+\frac{71\!\cdots\!05}{23\!\cdots\!68}a^{17}-\frac{11\!\cdots\!95}{23\!\cdots\!68}a^{16}+\frac{17\!\cdots\!63}{23\!\cdots\!68}a^{15}-\frac{78\!\cdots\!59}{11\!\cdots\!84}a^{14}+\frac{19\!\cdots\!41}{11\!\cdots\!84}a^{13}-\frac{94\!\cdots\!87}{11\!\cdots\!84}a^{12}+\frac{13\!\cdots\!93}{11\!\cdots\!84}a^{11}-\frac{64\!\cdots\!55}{23\!\cdots\!92}a^{10}-\frac{53\!\cdots\!71}{59\!\cdots\!92}a^{9}-\frac{53\!\cdots\!77}{59\!\cdots\!92}a^{8}+\frac{14\!\cdots\!67}{59\!\cdots\!92}a^{7}+\frac{47\!\cdots\!37}{29\!\cdots\!96}a^{6}-\frac{50\!\cdots\!19}{74\!\cdots\!24}a^{5}-\frac{51\!\cdots\!91}{14\!\cdots\!48}a^{4}+\frac{18\!\cdots\!61}{74\!\cdots\!24}a^{3}+\frac{10\!\cdots\!47}{37\!\cdots\!62}a^{2}+\frac{58\!\cdots\!24}{17\!\cdots\!21}a+\frac{47\!\cdots\!51}{18\!\cdots\!31}$, $\frac{19\!\cdots\!65}{14\!\cdots\!48}a^{31}-\frac{16\!\cdots\!17}{32\!\cdots\!56}a^{30}+\frac{18\!\cdots\!35}{32\!\cdots\!56}a^{29}-\frac{21\!\cdots\!11}{12\!\cdots\!56}a^{28}+\frac{32\!\cdots\!13}{32\!\cdots\!56}a^{27}-\frac{51\!\cdots\!97}{20\!\cdots\!16}a^{26}+\frac{25\!\cdots\!67}{25\!\cdots\!12}a^{25}-\frac{91\!\cdots\!27}{40\!\cdots\!32}a^{24}+\frac{22\!\cdots\!53}{32\!\cdots\!56}a^{23}-\frac{27\!\cdots\!37}{20\!\cdots\!16}a^{22}+\frac{10\!\cdots\!03}{32\!\cdots\!56}a^{21}-\frac{50\!\cdots\!31}{81\!\cdots\!64}a^{20}+\frac{37\!\cdots\!41}{32\!\cdots\!56}a^{19}-\frac{94\!\cdots\!23}{44\!\cdots\!44}a^{18}+\frac{10\!\cdots\!89}{32\!\cdots\!56}a^{17}-\frac{42\!\cdots\!81}{81\!\cdots\!64}a^{16}+\frac{24\!\cdots\!79}{29\!\cdots\!96}a^{15}-\frac{27\!\cdots\!71}{32\!\cdots\!56}a^{14}+\frac{27\!\cdots\!81}{16\!\cdots\!28}a^{13}-\frac{20\!\cdots\!35}{16\!\cdots\!28}a^{12}+\frac{22\!\cdots\!69}{16\!\cdots\!28}a^{11}-\frac{48\!\cdots\!77}{16\!\cdots\!28}a^{10}+\frac{67\!\cdots\!57}{40\!\cdots\!32}a^{9}-\frac{77\!\cdots\!73}{81\!\cdots\!64}a^{8}+\frac{20\!\cdots\!25}{81\!\cdots\!64}a^{7}+\frac{52\!\cdots\!83}{81\!\cdots\!64}a^{6}-\frac{24\!\cdots\!63}{37\!\cdots\!12}a^{5}-\frac{98\!\cdots\!27}{40\!\cdots\!32}a^{4}+\frac{12\!\cdots\!87}{20\!\cdots\!16}a^{3}+\frac{27\!\cdots\!77}{10\!\cdots\!58}a^{2}+\frac{77\!\cdots\!90}{51\!\cdots\!79}a-\frac{12\!\cdots\!93}{51\!\cdots\!79}$, $\frac{25\!\cdots\!15}{32\!\cdots\!56}a^{31}-\frac{25\!\cdots\!55}{65\!\cdots\!12}a^{30}+\frac{23\!\cdots\!89}{65\!\cdots\!12}a^{29}-\frac{79\!\cdots\!97}{59\!\cdots\!92}a^{28}+\frac{44\!\cdots\!65}{65\!\cdots\!12}a^{27}-\frac{13\!\cdots\!35}{65\!\cdots\!12}a^{26}+\frac{48\!\cdots\!45}{65\!\cdots\!12}a^{25}-\frac{88\!\cdots\!65}{45\!\cdots\!84}a^{24}+\frac{35\!\cdots\!13}{65\!\cdots\!12}a^{23}-\frac{79\!\cdots\!55}{65\!\cdots\!12}a^{22}+\frac{18\!\cdots\!53}{65\!\cdots\!12}a^{21}-\frac{37\!\cdots\!91}{65\!\cdots\!12}a^{20}+\frac{69\!\cdots\!21}{65\!\cdots\!12}a^{19}-\frac{34\!\cdots\!29}{17\!\cdots\!76}a^{18}+\frac{21\!\cdots\!87}{65\!\cdots\!12}a^{17}-\frac{33\!\cdots\!57}{65\!\cdots\!12}a^{16}+\frac{53\!\cdots\!41}{65\!\cdots\!12}a^{15}-\frac{30\!\cdots\!83}{29\!\cdots\!96}a^{14}+\frac{49\!\cdots\!41}{32\!\cdots\!56}a^{13}-\frac{58\!\cdots\!47}{32\!\cdots\!56}a^{12}+\frac{53\!\cdots\!59}{32\!\cdots\!56}a^{11}-\frac{21\!\cdots\!99}{81\!\cdots\!64}a^{10}+\frac{25\!\cdots\!77}{12\!\cdots\!56}a^{9}-\frac{11\!\cdots\!31}{14\!\cdots\!48}a^{8}+\frac{34\!\cdots\!49}{16\!\cdots\!28}a^{7}-\frac{99\!\cdots\!85}{81\!\cdots\!64}a^{6}-\frac{28\!\cdots\!01}{40\!\cdots\!32}a^{5}+\frac{12\!\cdots\!45}{51\!\cdots\!79}a^{4}+\frac{29\!\cdots\!71}{18\!\cdots\!56}a^{3}-\frac{10\!\cdots\!89}{51\!\cdots\!79}a^{2}-\frac{37\!\cdots\!57}{51\!\cdots\!79}a-\frac{26\!\cdots\!05}{51\!\cdots\!79}$, $\frac{28\!\cdots\!35}{32\!\cdots\!56}a^{31}-\frac{16\!\cdots\!83}{65\!\cdots\!12}a^{30}+\frac{21\!\cdots\!89}{65\!\cdots\!12}a^{29}-\frac{48\!\cdots\!83}{65\!\cdots\!12}a^{28}+\frac{33\!\cdots\!93}{65\!\cdots\!12}a^{27}-\frac{62\!\cdots\!15}{65\!\cdots\!12}a^{26}+\frac{29\!\cdots\!89}{65\!\cdots\!12}a^{25}-\frac{46\!\cdots\!83}{65\!\cdots\!12}a^{24}+\frac{17\!\cdots\!01}{65\!\cdots\!12}a^{23}-\frac{21\!\cdots\!01}{59\!\cdots\!92}a^{22}+\frac{64\!\cdots\!61}{65\!\cdots\!12}a^{21}-\frac{70\!\cdots\!83}{50\!\cdots\!24}a^{20}+\frac{11\!\cdots\!33}{50\!\cdots\!24}a^{19}-\frac{54\!\cdots\!77}{13\!\cdots\!52}a^{18}+\frac{20\!\cdots\!07}{65\!\cdots\!12}a^{17}-\frac{32\!\cdots\!05}{65\!\cdots\!12}a^{16}+\frac{48\!\cdots\!93}{65\!\cdots\!12}a^{15}+\frac{62\!\cdots\!53}{32\!\cdots\!56}a^{14}+\frac{75\!\cdots\!63}{29\!\cdots\!96}a^{13}+\frac{19\!\cdots\!99}{32\!\cdots\!56}a^{12}-\frac{13\!\cdots\!53}{25\!\cdots\!12}a^{11}-\frac{12\!\cdots\!79}{20\!\cdots\!16}a^{10}-\frac{34\!\cdots\!13}{14\!\cdots\!48}a^{9}+\frac{98\!\cdots\!97}{16\!\cdots\!28}a^{8}+\frac{17\!\cdots\!21}{16\!\cdots\!28}a^{7}+\frac{19\!\cdots\!29}{81\!\cdots\!64}a^{6}-\frac{39\!\cdots\!21}{40\!\cdots\!32}a^{5}-\frac{39\!\cdots\!27}{40\!\cdots\!32}a^{4}+\frac{65\!\cdots\!14}{51\!\cdots\!79}a^{3}+\frac{13\!\cdots\!63}{92\!\cdots\!78}a^{2}+\frac{15\!\cdots\!73}{51\!\cdots\!79}a+\frac{10\!\cdots\!97}{51\!\cdots\!79}$, $\frac{13\!\cdots\!19}{88\!\cdots\!88}a^{31}-\frac{10\!\cdots\!03}{17\!\cdots\!76}a^{30}+\frac{10\!\cdots\!99}{16\!\cdots\!16}a^{29}-\frac{26\!\cdots\!69}{13\!\cdots\!52}a^{28}+\frac{19\!\cdots\!01}{17\!\cdots\!76}a^{27}-\frac{51\!\cdots\!93}{17\!\cdots\!76}a^{26}+\frac{14\!\cdots\!79}{12\!\cdots\!32}a^{25}-\frac{45\!\cdots\!25}{17\!\cdots\!76}a^{24}+\frac{13\!\cdots\!41}{17\!\cdots\!76}a^{23}-\frac{27\!\cdots\!73}{17\!\cdots\!76}a^{22}+\frac{65\!\cdots\!81}{17\!\cdots\!76}a^{21}-\frac{12\!\cdots\!73}{17\!\cdots\!76}a^{20}+\frac{23\!\cdots\!77}{17\!\cdots\!76}a^{19}-\frac{42\!\cdots\!91}{17\!\cdots\!76}a^{18}+\frac{65\!\cdots\!83}{17\!\cdots\!76}a^{17}-\frac{10\!\cdots\!03}{17\!\cdots\!76}a^{16}+\frac{16\!\cdots\!37}{17\!\cdots\!76}a^{15}-\frac{20\!\cdots\!65}{22\!\cdots\!72}a^{14}+\frac{16\!\cdots\!45}{88\!\cdots\!88}a^{13}-\frac{11\!\cdots\!59}{88\!\cdots\!88}a^{12}+\frac{11\!\cdots\!25}{80\!\cdots\!08}a^{11}-\frac{13\!\cdots\!91}{40\!\cdots\!04}a^{10}+\frac{52\!\cdots\!43}{44\!\cdots\!44}a^{9}-\frac{39\!\cdots\!93}{44\!\cdots\!44}a^{8}+\frac{12\!\cdots\!61}{44\!\cdots\!44}a^{7}+\frac{84\!\cdots\!43}{11\!\cdots\!36}a^{6}-\frac{50\!\cdots\!27}{55\!\cdots\!68}a^{5}-\frac{20\!\cdots\!61}{11\!\cdots\!36}a^{4}+\frac{54\!\cdots\!77}{55\!\cdots\!68}a^{3}+\frac{20\!\cdots\!73}{13\!\cdots\!67}a^{2}-\frac{62\!\cdots\!98}{13\!\cdots\!67}a+\frac{15\!\cdots\!59}{13\!\cdots\!67}$, $\frac{11\!\cdots\!45}{81\!\cdots\!64}a^{31}-\frac{10\!\cdots\!51}{16\!\cdots\!28}a^{30}+\frac{89\!\cdots\!17}{14\!\cdots\!48}a^{29}-\frac{17\!\cdots\!69}{81\!\cdots\!64}a^{28}+\frac{18\!\cdots\!31}{16\!\cdots\!28}a^{27}-\frac{53\!\cdots\!31}{16\!\cdots\!28}a^{26}+\frac{45\!\cdots\!51}{37\!\cdots\!12}a^{25}-\frac{18\!\cdots\!17}{62\!\cdots\!28}a^{24}+\frac{14\!\cdots\!41}{16\!\cdots\!28}a^{23}-\frac{30\!\cdots\!27}{16\!\cdots\!28}a^{22}+\frac{44\!\cdots\!51}{10\!\cdots\!58}a^{21}-\frac{71\!\cdots\!99}{81\!\cdots\!64}a^{20}+\frac{27\!\cdots\!93}{16\!\cdots\!28}a^{19}-\frac{13\!\cdots\!33}{44\!\cdots\!44}a^{18}+\frac{41\!\cdots\!39}{81\!\cdots\!64}a^{17}-\frac{65\!\cdots\!43}{81\!\cdots\!64}a^{16}+\frac{20\!\cdots\!45}{16\!\cdots\!28}a^{15}-\frac{12\!\cdots\!87}{81\!\cdots\!64}a^{14}+\frac{40\!\cdots\!73}{16\!\cdots\!28}a^{13}-\frac{10\!\cdots\!27}{40\!\cdots\!32}a^{12}+\frac{50\!\cdots\!35}{18\!\cdots\!56}a^{11}-\frac{16\!\cdots\!77}{37\!\cdots\!12}a^{10}+\frac{16\!\cdots\!57}{62\!\cdots\!28}a^{9}-\frac{80\!\cdots\!55}{40\!\cdots\!32}a^{8}+\frac{18\!\cdots\!14}{51\!\cdots\!79}a^{7}-\frac{25\!\cdots\!75}{20\!\cdots\!16}a^{6}-\frac{14\!\cdots\!11}{40\!\cdots\!32}a^{5}+\frac{86\!\cdots\!33}{20\!\cdots\!16}a^{4}+\frac{97\!\cdots\!93}{20\!\cdots\!16}a^{3}-\frac{40\!\cdots\!42}{51\!\cdots\!79}a^{2}+\frac{47\!\cdots\!28}{51\!\cdots\!79}a-\frac{17\!\cdots\!81}{51\!\cdots\!79}$, $\frac{14\!\cdots\!68}{51\!\cdots\!79}a^{31}-\frac{35\!\cdots\!47}{31\!\cdots\!64}a^{30}+\frac{11\!\cdots\!37}{92\!\cdots\!78}a^{29}-\frac{30\!\cdots\!37}{81\!\cdots\!64}a^{28}+\frac{87\!\cdots\!71}{40\!\cdots\!32}a^{27}-\frac{44\!\cdots\!41}{81\!\cdots\!64}a^{26}+\frac{40\!\cdots\!57}{18\!\cdots\!56}a^{25}-\frac{78\!\cdots\!83}{16\!\cdots\!28}a^{24}+\frac{46\!\cdots\!47}{31\!\cdots\!64}a^{23}-\frac{23\!\cdots\!83}{81\!\cdots\!64}a^{22}+\frac{57\!\cdots\!25}{81\!\cdots\!64}a^{21}-\frac{21\!\cdots\!79}{16\!\cdots\!28}a^{20}+\frac{20\!\cdots\!17}{81\!\cdots\!64}a^{19}-\frac{10\!\cdots\!41}{22\!\cdots\!72}a^{18}+\frac{14\!\cdots\!53}{20\!\cdots\!16}a^{17}-\frac{18\!\cdots\!23}{16\!\cdots\!28}a^{16}+\frac{17\!\cdots\!25}{10\!\cdots\!58}a^{15}-\frac{14\!\cdots\!31}{81\!\cdots\!64}a^{14}+\frac{29\!\cdots\!89}{81\!\cdots\!64}a^{13}-\frac{41\!\cdots\!67}{16\!\cdots\!28}a^{12}+\frac{21\!\cdots\!41}{74\!\cdots\!24}a^{11}-\frac{23\!\cdots\!87}{37\!\cdots\!12}a^{10}+\frac{32\!\cdots\!63}{40\!\cdots\!32}a^{9}-\frac{17\!\cdots\!91}{81\!\cdots\!64}a^{8}+\frac{10\!\cdots\!53}{20\!\cdots\!16}a^{7}+\frac{33\!\cdots\!31}{20\!\cdots\!16}a^{6}-\frac{26\!\cdots\!95}{20\!\cdots\!16}a^{5}-\frac{20\!\cdots\!57}{40\!\cdots\!32}a^{4}+\frac{47\!\cdots\!63}{51\!\cdots\!79}a^{3}+\frac{30\!\cdots\!21}{51\!\cdots\!79}a^{2}+\frac{11\!\cdots\!09}{39\!\cdots\!83}a-\frac{38\!\cdots\!31}{51\!\cdots\!79}$, $\frac{14\!\cdots\!33}{65\!\cdots\!12}a^{31}-\frac{14\!\cdots\!59}{16\!\cdots\!28}a^{30}+\frac{76\!\cdots\!69}{81\!\cdots\!64}a^{29}-\frac{24\!\cdots\!17}{81\!\cdots\!64}a^{28}+\frac{68\!\cdots\!99}{40\!\cdots\!32}a^{27}-\frac{45\!\cdots\!01}{10\!\cdots\!58}a^{26}+\frac{28\!\cdots\!67}{16\!\cdots\!28}a^{25}-\frac{64\!\cdots\!19}{16\!\cdots\!28}a^{24}+\frac{19\!\cdots\!79}{16\!\cdots\!28}a^{23}-\frac{19\!\cdots\!11}{81\!\cdots\!64}a^{22}+\frac{94\!\cdots\!97}{16\!\cdots\!28}a^{21}-\frac{90\!\cdots\!85}{81\!\cdots\!64}a^{20}+\frac{68\!\cdots\!41}{32\!\cdots\!56}a^{19}-\frac{16\!\cdots\!13}{44\!\cdots\!44}a^{18}+\frac{97\!\cdots\!31}{16\!\cdots\!28}a^{17}-\frac{14\!\cdots\!63}{14\!\cdots\!48}a^{16}+\frac{98\!\cdots\!71}{65\!\cdots\!12}a^{15}-\frac{26\!\cdots\!45}{16\!\cdots\!28}a^{14}+\frac{49\!\cdots\!43}{16\!\cdots\!28}a^{13}-\frac{10\!\cdots\!53}{40\!\cdots\!32}a^{12}+\frac{88\!\cdots\!95}{32\!\cdots\!56}a^{11}-\frac{87\!\cdots\!35}{16\!\cdots\!28}a^{10}+\frac{42\!\cdots\!57}{40\!\cdots\!32}a^{9}-\frac{77\!\cdots\!31}{40\!\cdots\!32}a^{8}+\frac{72\!\cdots\!27}{16\!\cdots\!28}a^{7}+\frac{33\!\cdots\!51}{74\!\cdots\!24}a^{6}-\frac{80\!\cdots\!99}{78\!\cdots\!66}a^{5}-\frac{26\!\cdots\!45}{10\!\cdots\!58}a^{4}+\frac{22\!\cdots\!95}{20\!\cdots\!16}a^{3}+\frac{24\!\cdots\!47}{10\!\cdots\!58}a^{2}+\frac{87\!\cdots\!19}{51\!\cdots\!79}a-\frac{11\!\cdots\!15}{46\!\cdots\!89}$, $\frac{12\!\cdots\!61}{65\!\cdots\!12}a^{31}-\frac{56\!\cdots\!89}{65\!\cdots\!12}a^{30}+\frac{56\!\cdots\!07}{65\!\cdots\!12}a^{29}-\frac{19\!\cdots\!95}{65\!\cdots\!12}a^{28}+\frac{10\!\cdots\!39}{65\!\cdots\!12}a^{27}-\frac{29\!\cdots\!99}{65\!\cdots\!12}a^{26}+\frac{11\!\cdots\!59}{65\!\cdots\!12}a^{25}-\frac{27\!\cdots\!95}{65\!\cdots\!12}a^{24}+\frac{81\!\cdots\!11}{65\!\cdots\!12}a^{23}-\frac{17\!\cdots\!75}{65\!\cdots\!12}a^{22}+\frac{41\!\cdots\!71}{65\!\cdots\!12}a^{21}-\frac{82\!\cdots\!07}{65\!\cdots\!12}a^{20}+\frac{15\!\cdots\!89}{65\!\cdots\!12}a^{19}-\frac{79\!\cdots\!25}{17\!\cdots\!76}a^{18}+\frac{48\!\cdots\!49}{65\!\cdots\!12}a^{17}-\frac{71\!\cdots\!79}{59\!\cdots\!92}a^{16}+\frac{31\!\cdots\!19}{16\!\cdots\!28}a^{15}-\frac{18\!\cdots\!69}{81\!\cdots\!64}a^{14}+\frac{12\!\cdots\!95}{32\!\cdots\!56}a^{13}-\frac{12\!\cdots\!57}{32\!\cdots\!56}a^{12}+\frac{73\!\cdots\!67}{16\!\cdots\!28}a^{11}-\frac{56\!\cdots\!83}{81\!\cdots\!64}a^{10}+\frac{64\!\cdots\!23}{16\!\cdots\!28}a^{9}-\frac{70\!\cdots\!67}{16\!\cdots\!28}a^{8}+\frac{88\!\cdots\!99}{15\!\cdots\!32}a^{7}-\frac{14\!\cdots\!35}{74\!\cdots\!24}a^{6}+\frac{32\!\cdots\!49}{40\!\cdots\!32}a^{5}-\frac{10\!\cdots\!71}{31\!\cdots\!64}a^{4}-\frac{21\!\cdots\!29}{20\!\cdots\!16}a^{3}+\frac{99\!\cdots\!72}{51\!\cdots\!79}a^{2}+\frac{12\!\cdots\!29}{51\!\cdots\!79}a-\frac{12\!\cdots\!61}{46\!\cdots\!89}$, $\frac{32\!\cdots\!33}{32\!\cdots\!56}a^{31}-\frac{27\!\cdots\!25}{65\!\cdots\!12}a^{30}+\frac{27\!\cdots\!85}{65\!\cdots\!12}a^{29}-\frac{94\!\cdots\!37}{65\!\cdots\!12}a^{28}+\frac{39\!\cdots\!73}{50\!\cdots\!24}a^{27}-\frac{14\!\cdots\!57}{65\!\cdots\!12}a^{26}+\frac{54\!\cdots\!85}{65\!\cdots\!12}a^{25}-\frac{12\!\cdots\!41}{65\!\cdots\!12}a^{24}+\frac{37\!\cdots\!53}{65\!\cdots\!12}a^{23}-\frac{80\!\cdots\!25}{65\!\cdots\!12}a^{22}+\frac{18\!\cdots\!93}{65\!\cdots\!12}a^{21}-\frac{36\!\cdots\!65}{65\!\cdots\!12}a^{20}+\frac{69\!\cdots\!81}{65\!\cdots\!12}a^{19}-\frac{34\!\cdots\!99}{17\!\cdots\!76}a^{18}+\frac{20\!\cdots\!99}{65\!\cdots\!12}a^{17}-\frac{29\!\cdots\!45}{59\!\cdots\!92}a^{16}+\frac{51\!\cdots\!61}{65\!\cdots\!12}a^{15}-\frac{29\!\cdots\!13}{32\!\cdots\!56}a^{14}+\frac{50\!\cdots\!87}{32\!\cdots\!56}a^{13}-\frac{36\!\cdots\!81}{25\!\cdots\!12}a^{12}+\frac{49\!\cdots\!07}{32\!\cdots\!56}a^{11}-\frac{22\!\cdots\!03}{81\!\cdots\!64}a^{10}+\frac{18\!\cdots\!59}{16\!\cdots\!28}a^{9}-\frac{15\!\cdots\!59}{16\!\cdots\!28}a^{8}+\frac{35\!\cdots\!73}{16\!\cdots\!28}a^{7}-\frac{24\!\cdots\!69}{74\!\cdots\!24}a^{6}-\frac{26\!\cdots\!45}{51\!\cdots\!79}a^{5}+\frac{46\!\cdots\!85}{10\!\cdots\!58}a^{4}+\frac{12\!\cdots\!03}{20\!\cdots\!16}a^{3}-\frac{32\!\cdots\!95}{10\!\cdots\!58}a^{2}-\frac{43\!\cdots\!81}{51\!\cdots\!79}a+\frac{27\!\cdots\!55}{46\!\cdots\!89}$, $\frac{97\!\cdots\!67}{32\!\cdots\!56}a^{31}-\frac{37\!\cdots\!25}{32\!\cdots\!56}a^{30}+\frac{20\!\cdots\!33}{16\!\cdots\!28}a^{29}-\frac{12\!\cdots\!41}{32\!\cdots\!56}a^{28}+\frac{32\!\cdots\!37}{14\!\cdots\!48}a^{27}-\frac{18\!\cdots\!61}{32\!\cdots\!56}a^{26}+\frac{18\!\cdots\!65}{81\!\cdots\!64}a^{25}-\frac{16\!\cdots\!45}{32\!\cdots\!56}a^{24}+\frac{24\!\cdots\!99}{16\!\cdots\!28}a^{23}-\frac{98\!\cdots\!93}{32\!\cdots\!56}a^{22}+\frac{59\!\cdots\!99}{81\!\cdots\!64}a^{21}-\frac{40\!\cdots\!07}{29\!\cdots\!96}a^{20}+\frac{21\!\cdots\!47}{81\!\cdots\!64}a^{19}-\frac{41\!\cdots\!79}{88\!\cdots\!88}a^{18}+\frac{29\!\cdots\!03}{40\!\cdots\!32}a^{17}-\frac{38\!\cdots\!95}{32\!\cdots\!56}a^{16}+\frac{59\!\cdots\!99}{32\!\cdots\!56}a^{15}-\frac{29\!\cdots\!25}{16\!\cdots\!28}a^{14}+\frac{61\!\cdots\!97}{16\!\cdots\!28}a^{13}-\frac{44\!\cdots\!09}{16\!\cdots\!28}a^{12}+\frac{50\!\cdots\!19}{16\!\cdots\!28}a^{11}-\frac{27\!\cdots\!79}{40\!\cdots\!32}a^{10}+\frac{24\!\cdots\!19}{81\!\cdots\!64}a^{9}-\frac{17\!\cdots\!65}{81\!\cdots\!64}a^{8}+\frac{31\!\cdots\!57}{57\!\cdots\!48}a^{7}+\frac{60\!\cdots\!85}{40\!\cdots\!32}a^{6}-\frac{57\!\cdots\!79}{40\!\cdots\!32}a^{5}-\frac{43\!\cdots\!31}{78\!\cdots\!66}a^{4}+\frac{25\!\cdots\!45}{20\!\cdots\!16}a^{3}+\frac{60\!\cdots\!39}{10\!\cdots\!58}a^{2}+\frac{18\!\cdots\!09}{51\!\cdots\!79}a-\frac{36\!\cdots\!65}{51\!\cdots\!79}$, $\frac{71\!\cdots\!77}{65\!\cdots\!12}a^{31}-\frac{28\!\cdots\!75}{65\!\cdots\!12}a^{30}+\frac{29\!\cdots\!01}{65\!\cdots\!12}a^{29}-\frac{94\!\cdots\!31}{65\!\cdots\!12}a^{28}+\frac{41\!\cdots\!29}{50\!\cdots\!24}a^{27}-\frac{13\!\cdots\!83}{65\!\cdots\!12}a^{26}+\frac{55\!\cdots\!61}{65\!\cdots\!12}a^{25}-\frac{12\!\cdots\!19}{65\!\cdots\!12}a^{24}+\frac{37\!\cdots\!29}{65\!\cdots\!12}a^{23}-\frac{75\!\cdots\!43}{65\!\cdots\!12}a^{22}+\frac{17\!\cdots\!57}{65\!\cdots\!12}a^{21}-\frac{34\!\cdots\!19}{65\!\cdots\!12}a^{20}+\frac{64\!\cdots\!35}{65\!\cdots\!12}a^{19}-\frac{31\!\cdots\!85}{17\!\cdots\!76}a^{18}+\frac{18\!\cdots\!75}{65\!\cdots\!12}a^{17}-\frac{26\!\cdots\!51}{59\!\cdots\!92}a^{16}+\frac{22\!\cdots\!17}{32\!\cdots\!56}a^{15}-\frac{23\!\cdots\!87}{32\!\cdots\!56}a^{14}+\frac{46\!\cdots\!23}{32\!\cdots\!56}a^{13}-\frac{27\!\cdots\!73}{25\!\cdots\!12}a^{12}+\frac{49\!\cdots\!35}{40\!\cdots\!32}a^{11}-\frac{41\!\cdots\!07}{16\!\cdots\!28}a^{10}+\frac{47\!\cdots\!65}{16\!\cdots\!28}a^{9}-\frac{13\!\cdots\!55}{16\!\cdots\!28}a^{8}+\frac{17\!\cdots\!51}{81\!\cdots\!64}a^{7}+\frac{14\!\cdots\!35}{37\!\cdots\!12}a^{6}-\frac{21\!\cdots\!23}{40\!\cdots\!32}a^{5}-\frac{74\!\cdots\!77}{40\!\cdots\!32}a^{4}+\frac{26\!\cdots\!64}{51\!\cdots\!79}a^{3}+\frac{21\!\cdots\!19}{10\!\cdots\!58}a^{2}+\frac{46\!\cdots\!70}{51\!\cdots\!79}a-\frac{10\!\cdots\!88}{46\!\cdots\!89}$, $\frac{16\!\cdots\!11}{65\!\cdots\!12}a^{31}-\frac{33\!\cdots\!15}{32\!\cdots\!56}a^{30}+\frac{86\!\cdots\!65}{81\!\cdots\!64}a^{29}-\frac{11\!\cdots\!93}{32\!\cdots\!56}a^{28}+\frac{78\!\cdots\!49}{40\!\cdots\!32}a^{27}-\frac{13\!\cdots\!75}{25\!\cdots\!12}a^{26}+\frac{33\!\cdots\!45}{16\!\cdots\!28}a^{25}-\frac{15\!\cdots\!61}{32\!\cdots\!56}a^{24}+\frac{20\!\cdots\!79}{14\!\cdots\!48}a^{23}-\frac{94\!\cdots\!67}{32\!\cdots\!56}a^{22}+\frac{11\!\cdots\!59}{16\!\cdots\!28}a^{21}-\frac{43\!\cdots\!59}{32\!\cdots\!56}a^{20}+\frac{81\!\cdots\!11}{32\!\cdots\!56}a^{19}-\frac{40\!\cdots\!23}{88\!\cdots\!88}a^{18}+\frac{11\!\cdots\!85}{16\!\cdots\!28}a^{17}-\frac{38\!\cdots\!27}{32\!\cdots\!56}a^{16}+\frac{11\!\cdots\!49}{65\!\cdots\!12}a^{15}-\frac{32\!\cdots\!93}{16\!\cdots\!28}a^{14}+\frac{60\!\cdots\!41}{16\!\cdots\!28}a^{13}-\frac{23\!\cdots\!05}{74\!\cdots\!24}a^{12}+\frac{11\!\cdots\!61}{32\!\cdots\!56}a^{11}-\frac{10\!\cdots\!97}{16\!\cdots\!28}a^{10}+\frac{19\!\cdots\!65}{10\!\cdots\!58}a^{9}-\frac{78\!\cdots\!65}{31\!\cdots\!64}a^{8}+\frac{85\!\cdots\!05}{16\!\cdots\!28}a^{7}-\frac{34\!\cdots\!15}{81\!\cdots\!64}a^{6}-\frac{10\!\cdots\!39}{10\!\cdots\!58}a^{5}-\frac{64\!\cdots\!33}{40\!\cdots\!32}a^{4}+\frac{77\!\cdots\!39}{10\!\cdots\!58}a^{3}+\frac{48\!\cdots\!37}{51\!\cdots\!79}a^{2}+\frac{43\!\cdots\!24}{51\!\cdots\!79}a-\frac{14\!\cdots\!13}{51\!\cdots\!79}$, $\frac{26\!\cdots\!47}{65\!\cdots\!12}a^{31}-\frac{92\!\cdots\!55}{65\!\cdots\!12}a^{30}+\frac{10\!\cdots\!53}{65\!\cdots\!12}a^{29}-\frac{30\!\cdots\!33}{65\!\cdots\!12}a^{28}+\frac{16\!\cdots\!55}{59\!\cdots\!92}a^{27}-\frac{43\!\cdots\!89}{65\!\cdots\!12}a^{26}+\frac{17\!\cdots\!73}{65\!\cdots\!12}a^{25}-\frac{36\!\cdots\!49}{65\!\cdots\!12}a^{24}+\frac{11\!\cdots\!13}{65\!\cdots\!12}a^{23}-\frac{21\!\cdots\!85}{65\!\cdots\!12}a^{22}+\frac{53\!\cdots\!05}{65\!\cdots\!12}a^{21}-\frac{88\!\cdots\!83}{59\!\cdots\!92}a^{20}+\frac{18\!\cdots\!47}{65\!\cdots\!12}a^{19}-\frac{89\!\cdots\!63}{17\!\cdots\!76}a^{18}+\frac{47\!\cdots\!63}{65\!\cdots\!12}a^{17}-\frac{77\!\cdots\!87}{65\!\cdots\!12}a^{16}+\frac{30\!\cdots\!11}{16\!\cdots\!28}a^{15}-\frac{12\!\cdots\!41}{81\!\cdots\!64}a^{14}+\frac{13\!\cdots\!51}{32\!\cdots\!56}a^{13}-\frac{58\!\cdots\!05}{32\!\cdots\!56}a^{12}+\frac{40\!\cdots\!01}{16\!\cdots\!28}a^{11}-\frac{58\!\cdots\!07}{81\!\cdots\!64}a^{10}-\frac{46\!\cdots\!85}{16\!\cdots\!28}a^{9}-\frac{30\!\cdots\!55}{16\!\cdots\!28}a^{8}+\frac{23\!\cdots\!23}{37\!\cdots\!12}a^{7}+\frac{28\!\cdots\!01}{62\!\cdots\!28}a^{6}-\frac{41\!\cdots\!27}{20\!\cdots\!16}a^{5}-\frac{31\!\cdots\!89}{20\!\cdots\!16}a^{4}+\frac{15\!\cdots\!35}{78\!\cdots\!66}a^{3}+\frac{60\!\cdots\!24}{39\!\cdots\!83}a^{2}+\frac{44\!\cdots\!73}{51\!\cdots\!79}a-\frac{10\!\cdots\!01}{51\!\cdots\!79}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1934945357870.7947 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 1934945357870.7947 \cdot 108}{12\cdot\sqrt{29079187190356527093230483395294879034427143331250176}}\cr\approx \mathstrut & 0.602556779027274 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4^2:C_2^3$ (as 32T12882):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 512
The 80 conjugacy class representatives for $D_4^2:C_2^3$
Character table for $D_4^2:C_2^3$

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-21}) \), 4.4.366912.1, 4.0.366912.2, 4.4.7488.1, 4.0.7488.1, \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{3}, \sqrt{-7})\), 8.0.13058568327168.1, 8.8.13058568327168.1, 8.0.5438803968.1, 8.8.5438803968.1, 8.0.49787136.1, 8.0.134624415744.23, 8.0.56070144.2, 8.8.134624415744.1, 8.0.134624415744.42, 8.0.134624415744.27, 8.0.134624415744.43, 16.0.18123733314413355073536.1, 16.0.170526206755315257886900224.4, 16.0.29580588602332545024.3, 16.0.170526206755315257886900224.2, 16.16.170526206755315257886900224.1, 16.0.170526206755315257886900224.3, 16.0.170526206755315257886900224.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.8.0.1}{8} }^{4}$ R ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{8}$ R ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.8.0.1}{8} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.4.0.1}{4} }^{8}$ ${\href{/padicField/37.2.0.1}{2} }^{12}{,}\,{\href{/padicField/37.1.0.1}{1} }^{8}$ ${\href{/padicField/41.8.0.1}{8} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.2.0.1}{2} }^{16}$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.12.14$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 95 x^{4} + 130 x^{3} + 58 x^{2} - 58 x + 13$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.8.12.14$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 95 x^{4} + 130 x^{3} + 58 x^{2} - 58 x + 13$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.8.12.14$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 95 x^{4} + 130 x^{3} + 58 x^{2} - 58 x + 13$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.8.12.14$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 95 x^{4} + 130 x^{3} + 58 x^{2} - 58 x + 13$$4$$2$$12$$D_4$$[2, 2]^{2}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(7\) Copy content Toggle raw display 7.16.8.1$x^{16} + 56 x^{14} + 1372 x^{12} + 8 x^{11} + 19220 x^{10} - 388 x^{9} + 166984 x^{8} - 9184 x^{7} + 931800 x^{6} - 35624 x^{5} + 3372764 x^{4} + 135176 x^{3} + 6908172 x^{2} + 607080 x + 5583776$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
7.16.8.1$x^{16} + 56 x^{14} + 1372 x^{12} + 8 x^{11} + 19220 x^{10} - 388 x^{9} + 166984 x^{8} - 9184 x^{7} + 931800 x^{6} - 35624 x^{5} + 3372764 x^{4} + 135176 x^{3} + 6908172 x^{2} + 607080 x + 5583776$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(13\) Copy content Toggle raw display 13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(97\) Copy content Toggle raw display 97.2.0.1$x^{2} + 96 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} + 96 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} + 96 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} + 96 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.4.0.1$x^{4} + 6 x^{2} + 80 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} + 6 x^{2} + 80 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} + 6 x^{2} + 80 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} + 6 x^{2} + 80 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.2.1$x^{4} + 10474 x^{3} + 27919909 x^{2} + 2585716380 x + 183392493$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.4.2.1$x^{4} + 10474 x^{3} + 27919909 x^{2} + 2585716380 x + 183392493$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$