\\ Pari/GP code for working with number field 32.0.272292877590407567597186433188495333554574218609249.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^32 - x^31 - x^30 + 3*x^29 - x^28 - 5*x^27 + 7*x^26 + 3*x^25 - 17*x^24 + 11*x^23 + 23*x^22 - 45*x^21 - x^20 + 91*x^19 - 89*x^18 - 93*x^17 + 271*x^16 - 186*x^15 - 356*x^14 + 728*x^13 - 16*x^12 - 1440*x^11 + 1472*x^10 + 1408*x^9 - 4352*x^8 + 1536*x^7 + 7168*x^6 - 10240*x^5 - 4096*x^4 + 24576*x^3 - 16384*x^2 - 32768*x + 65536, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])