Properties

Label 32.0.26954663288...9456.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 17^{24}$
Root discriminant $58.00$
Ramified primes $2, 3, 17$
Class number $2560$ (GRH)
Class group $[2, 4, 4, 4, 20]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, -89, 0, 0, 0, 6657, 0, 0, 0, -112318, 0, 0, 0, 1589774, 0, 0, 0, -112318, 0, 0, 0, 6657, 0, 0, 0, -89, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 89*x^28 + 6657*x^24 - 112318*x^20 + 1589774*x^16 - 112318*x^12 + 6657*x^8 - 89*x^4 + 1)
 
gp: K = bnfinit(x^32 - 89*x^28 + 6657*x^24 - 112318*x^20 + 1589774*x^16 - 112318*x^12 + 6657*x^8 - 89*x^4 + 1, 1)
 

Normalized defining polynomial

\( x^{32} - 89 x^{28} + 6657 x^{24} - 112318 x^{20} + 1589774 x^{16} - 112318 x^{12} + 6657 x^{8} - 89 x^{4} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(269546632883105820058091127981737482106510848676862099456=2^{64}\cdot 3^{16}\cdot 17^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(408=2^{3}\cdot 3\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{408}(1,·)$, $\chi_{408}(259,·)$, $\chi_{408}(137,·)$, $\chi_{408}(395,·)$, $\chi_{408}(13,·)$, $\chi_{408}(271,·)$, $\chi_{408}(149,·)$, $\chi_{408}(407,·)$, $\chi_{408}(157,·)$, $\chi_{408}(35,·)$, $\chi_{408}(293,·)$, $\chi_{408}(169,·)$, $\chi_{408}(47,·)$, $\chi_{408}(305,·)$, $\chi_{408}(307,·)$, $\chi_{408}(55,·)$, $\chi_{408}(191,·)$, $\chi_{408}(67,·)$, $\chi_{408}(203,·)$, $\chi_{408}(205,·)$, $\chi_{408}(341,·)$, $\chi_{408}(217,·)$, $\chi_{408}(353,·)$, $\chi_{408}(251,·)$, $\chi_{408}(101,·)$, $\chi_{408}(103,·)$, $\chi_{408}(361,·)$, $\chi_{408}(239,·)$, $\chi_{408}(115,·)$, $\chi_{408}(373,·)$, $\chi_{408}(89,·)$, $\chi_{408}(319,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{208} a^{12} - \frac{103}{208}$, $\frac{1}{208} a^{13} - \frac{103}{208} a$, $\frac{1}{208} a^{14} - \frac{103}{208} a^{2}$, $\frac{1}{208} a^{15} - \frac{103}{208} a^{3}$, $\frac{1}{208} a^{16} - \frac{103}{208} a^{4}$, $\frac{1}{208} a^{17} - \frac{103}{208} a^{5}$, $\frac{1}{208} a^{18} - \frac{103}{208} a^{6}$, $\frac{1}{208} a^{19} - \frac{103}{208} a^{7}$, $\frac{1}{208} a^{20} - \frac{103}{208} a^{8}$, $\frac{1}{208} a^{21} - \frac{103}{208} a^{9}$, $\frac{1}{208} a^{22} - \frac{103}{208} a^{10}$, $\frac{1}{208} a^{23} - \frac{103}{208} a^{11}$, $\frac{1}{1644032} a^{24} + \frac{7}{3952} a^{20} + \frac{9}{3952} a^{16} - \frac{207}{822016} a^{12} + \frac{1567}{3952} a^{8} - \frac{1551}{3952} a^{4} - \frac{703455}{1644032}$, $\frac{1}{1644032} a^{25} + \frac{7}{3952} a^{21} + \frac{9}{3952} a^{17} - \frac{207}{822016} a^{13} + \frac{1567}{3952} a^{9} - \frac{1551}{3952} a^{5} - \frac{703455}{1644032} a$, $\frac{1}{1644032} a^{26} + \frac{7}{3952} a^{22} + \frac{9}{3952} a^{18} - \frac{207}{822016} a^{14} + \frac{1567}{3952} a^{10} - \frac{1551}{3952} a^{6} - \frac{703455}{1644032} a^{2}$, $\frac{1}{1644032} a^{27} + \frac{7}{3952} a^{23} + \frac{9}{3952} a^{19} - \frac{207}{822016} a^{15} + \frac{1567}{3952} a^{11} - \frac{1551}{3952} a^{7} - \frac{703455}{1644032} a^{3}$, $\frac{1}{12545608192} a^{28} - \frac{675}{12545608192} a^{24} + \frac{1795}{15078856} a^{20} + \frac{5208113}{6272804096} a^{16} - \frac{13166659}{6272804096} a^{12} + \frac{2417819}{15078856} a^{8} - \frac{5572727263}{12545608192} a^{4} - \frac{2049281571}{12545608192}$, $\frac{1}{12545608192} a^{29} - \frac{675}{12545608192} a^{25} + \frac{1795}{15078856} a^{21} + \frac{5208113}{6272804096} a^{17} - \frac{13166659}{6272804096} a^{13} + \frac{2417819}{15078856} a^{9} - \frac{5572727263}{12545608192} a^{5} - \frac{2049281571}{12545608192} a$, $\frac{1}{12545608192} a^{30} - \frac{675}{12545608192} a^{26} + \frac{1795}{15078856} a^{22} + \frac{5208113}{6272804096} a^{18} - \frac{13166659}{6272804096} a^{14} + \frac{2417819}{15078856} a^{10} - \frac{5572727263}{12545608192} a^{6} - \frac{2049281571}{12545608192} a^{2}$, $\frac{1}{12545608192} a^{31} - \frac{675}{12545608192} a^{27} + \frac{1795}{15078856} a^{23} + \frac{5208113}{6272804096} a^{19} - \frac{13166659}{6272804096} a^{15} + \frac{2417819}{15078856} a^{11} - \frac{5572727263}{12545608192} a^{7} - \frac{2049281571}{12545608192} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{20}$, which has order $2560$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{220250815}{12545608192} a^{29} + \frac{19586814385}{12545608192} a^{25} - \frac{3521225055}{30157712} a^{21} + \frac{12317454341265}{6272804096} a^{17} - \frac{174204163414143}{6272804096} a^{13} + \frac{248130665}{30157712} a^{9} - \frac{1380052575}{12545608192} a^{5} - \frac{37395278575}{12545608192} a \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9699756571026.293 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{51}) \), \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{102}) \), \(\Q(\sqrt{-102}) \), \(\Q(\zeta_{8})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(i, \sqrt{17})\), \(\Q(i, \sqrt{34})\), \(\Q(i, \sqrt{51})\), \(\Q(i, \sqrt{102})\), \(\Q(\sqrt{2}, \sqrt{17})\), \(\Q(\sqrt{2}, \sqrt{-17})\), \(\Q(\sqrt{2}, \sqrt{51})\), \(\Q(\sqrt{2}, \sqrt{-51})\), \(\Q(\sqrt{-2}, \sqrt{17})\), \(\Q(\sqrt{-2}, \sqrt{-17})\), \(\Q(\sqrt{-2}, \sqrt{51})\), \(\Q(\sqrt{-2}, \sqrt{-51})\), \(\Q(\sqrt{3}, \sqrt{17})\), \(\Q(\sqrt{3}, \sqrt{-17})\), \(\Q(\sqrt{3}, \sqrt{34})\), \(\Q(\sqrt{3}, \sqrt{-34})\), \(\Q(\sqrt{-3}, \sqrt{17})\), \(\Q(\sqrt{-3}, \sqrt{-17})\), \(\Q(\sqrt{-3}, \sqrt{34})\), \(\Q(\sqrt{-3}, \sqrt{-34})\), \(\Q(\sqrt{6}, \sqrt{17})\), \(\Q(\sqrt{6}, \sqrt{-17})\), \(\Q(\sqrt{6}, \sqrt{34})\), \(\Q(\sqrt{6}, \sqrt{-34})\), \(\Q(\sqrt{-6}, \sqrt{17})\), \(\Q(\sqrt{-6}, \sqrt{-17})\), \(\Q(\sqrt{-6}, \sqrt{34})\), \(\Q(\sqrt{-6}, \sqrt{-34})\), 4.4.707472.1, 4.0.44217.1, 4.4.2829888.2, 4.0.2829888.1, 4.4.4913.1, 4.0.78608.1, 4.4.314432.1, 4.0.314432.2, \(\Q(\zeta_{24})\), 8.0.5473632256.1, 8.0.443364212736.8, 8.0.1731891456.1, 8.0.443364212736.9, 8.0.443364212736.3, 8.0.443364212736.2, 8.8.443364212736.1, 8.0.443364212736.5, 8.0.27710263296.1, 8.0.443364212736.6, 8.0.443364212736.4, 8.0.443364212736.1, 8.0.27710263296.5, 8.0.443364212736.7, 8.0.500516630784.2, 8.0.128132257480704.79, 8.0.6179217664.1, 8.0.1581879721984.3, 8.8.128132257480704.3, 8.0.8008266092544.5, 8.8.98867482624.1, 8.0.1581879721984.2, 8.0.128132257480704.42, 8.0.8008266092544.3, 8.0.98867482624.1, 8.0.1581879721984.1, 8.8.500516630784.1, 8.0.500516630784.1, 8.8.128132257480704.2, 8.0.128132257480704.30, 8.0.500516630784.3, 8.0.1955143089.1, 8.0.8008266092544.6, 8.0.8008266092544.7, 8.8.128132257480704.1, 8.0.8008266092544.1, 8.8.8008266092544.1, 8.0.128132257480704.73, 8.0.128132257480704.3, 8.0.8008266092544.2, 8.0.128132257480704.60, 8.0.8008266092544.4, 16.0.196571825135013064605696.1, 16.0.16417875407101426168932335616.6, 16.0.2502343454824177132896256.1, 16.0.250516897691366976454656.1, 16.0.16417875407101426168932335616.7, 16.0.16417875407101426168932335616.8, 16.0.16417875407101426168932335616.1, 16.16.16417875407101426168932335616.1, 16.0.16417875407101426168932335616.2, 16.0.16417875407101426168932335616.4, 16.0.64132325808989945972391936.1, 16.0.16417875407101426168932335616.9, 16.0.16417875407101426168932335616.3, 16.0.16417875407101426168932335616.5, 16.0.64132325808989945972391936.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$17$17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$