Normalized defining polynomial
\( x^{32} + 5393 x^{24} + 1581856 x^{16} + 5393 x^{8} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{1157} a^{16} - \frac{196}{1157} a^{8} + \frac{1}{1157}$, $\frac{1}{1157} a^{17} - \frac{196}{1157} a^{9} + \frac{1}{1157} a$, $\frac{1}{1157} a^{18} - \frac{196}{1157} a^{10} + \frac{1}{1157} a^{2}$, $\frac{1}{1157} a^{19} - \frac{196}{1157} a^{11} + \frac{1}{1157} a^{3}$, $\frac{1}{1157} a^{20} - \frac{196}{1157} a^{12} + \frac{1}{1157} a^{4}$, $\frac{1}{1157} a^{21} - \frac{196}{1157} a^{13} + \frac{1}{1157} a^{5}$, $\frac{1}{1157} a^{22} - \frac{196}{1157} a^{14} + \frac{1}{1157} a^{6}$, $\frac{1}{1157} a^{23} - \frac{196}{1157} a^{15} + \frac{1}{1157} a^{7}$, $\frac{1}{443880736} a^{24} + \frac{1470}{13871273} a^{16} - \frac{1707694}{13871273} a^{8} - \frac{128563727}{443880736}$, $\frac{1}{443880736} a^{25} + \frac{1470}{13871273} a^{17} - \frac{1707694}{13871273} a^{9} - \frac{128563727}{443880736} a$, $\frac{1}{443880736} a^{26} + \frac{1470}{13871273} a^{18} - \frac{1707694}{13871273} a^{10} - \frac{128563727}{443880736} a^{2}$, $\frac{1}{443880736} a^{27} + \frac{1470}{13871273} a^{19} - \frac{1707694}{13871273} a^{11} - \frac{128563727}{443880736} a^{3}$, $\frac{1}{443880736} a^{28} + \frac{1470}{13871273} a^{20} - \frac{1707694}{13871273} a^{12} - \frac{128563727}{443880736} a^{4}$, $\frac{1}{443880736} a^{29} + \frac{1470}{13871273} a^{21} - \frac{1707694}{13871273} a^{13} - \frac{128563727}{443880736} a^{5}$, $\frac{1}{443880736} a^{30} + \frac{1470}{13871273} a^{22} - \frac{1707694}{13871273} a^{14} - \frac{128563727}{443880736} a^{6}$, $\frac{1}{443880736} a^{31} + \frac{1470}{13871273} a^{23} - \frac{1707694}{13871273} a^{15} - \frac{128563727}{443880736} a^{7}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{52}$, which has order $3328$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1541897}{221940368} a^{27} - \frac{519715562}{13871273} a^{19} - \frac{152440673890}{13871273} a^{11} - \frac{5924869417}{221940368} a^{3} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38649094918357.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |