Properties

Label 32.0.262...000.1
Degree $32$
Signature $[0, 16]$
Discriminant $2.626\times 10^{52}$
Root discriminant \(43.46\)
Ramified primes $2,3,5,31,89$
Class number $144$ (GRH)
Class group [2, 6, 12] (GRH)
Galois group $D_4^2:C_2^3$ (as 32T12882)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 5*x^30 + 8*x^28 + 5*x^26 + x^24 - 40*x^22 - 152*x^20 - 240*x^18 - 336*x^16 - 960*x^14 - 2432*x^12 - 2560*x^10 + 256*x^8 + 5120*x^6 + 32768*x^4 + 81920*x^2 + 65536)
 
gp: K = bnfinit(y^32 + 5*y^30 + 8*y^28 + 5*y^26 + y^24 - 40*y^22 - 152*y^20 - 240*y^18 - 336*y^16 - 960*y^14 - 2432*y^12 - 2560*y^10 + 256*y^8 + 5120*y^6 + 32768*y^4 + 81920*y^2 + 65536, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 + 5*x^30 + 8*x^28 + 5*x^26 + x^24 - 40*x^22 - 152*x^20 - 240*x^18 - 336*x^16 - 960*x^14 - 2432*x^12 - 2560*x^10 + 256*x^8 + 5120*x^6 + 32768*x^4 + 81920*x^2 + 65536);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^32 + 5*x^30 + 8*x^28 + 5*x^26 + x^24 - 40*x^22 - 152*x^20 - 240*x^18 - 336*x^16 - 960*x^14 - 2432*x^12 - 2560*x^10 + 256*x^8 + 5120*x^6 + 32768*x^4 + 81920*x^2 + 65536)
 

\( x^{32} + 5 x^{30} + 8 x^{28} + 5 x^{26} + x^{24} - 40 x^{22} - 152 x^{20} - 240 x^{18} - 336 x^{16} + \cdots + 65536 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(26255893369003065702238822824526479360000000000000000\) \(\medspace = 2^{40}\cdot 3^{16}\cdot 5^{16}\cdot 31^{4}\cdot 89^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(43.46\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}5^{1/2}31^{1/2}89^{1/2}\approx 575.395516145199$
Ramified primes:   \(2\), \(3\), \(5\), \(31\), \(89\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{10}+\frac{1}{4}a^{4}$, $\frac{1}{8}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{3}{8}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{12}-\frac{3}{8}a^{6}$, $\frac{1}{16}a^{13}+\frac{5}{16}a^{7}-\frac{1}{2}a$, $\frac{1}{16}a^{14}-\frac{3}{16}a^{8}$, $\frac{1}{32}a^{15}+\frac{5}{32}a^{9}+\frac{1}{4}a^{3}$, $\frac{1}{64}a^{16}-\frac{1}{16}a^{12}-\frac{3}{64}a^{10}-\frac{1}{4}a^{8}+\frac{3}{16}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{128}a^{17}-\frac{1}{32}a^{13}-\frac{1}{16}a^{12}-\frac{3}{128}a^{11}-\frac{1}{8}a^{10}+\frac{1}{8}a^{9}-\frac{1}{4}a^{8}+\frac{3}{32}a^{7}+\frac{3}{16}a^{6}-\frac{1}{2}a^{5}+\frac{3}{8}a^{4}-\frac{3}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{128}a^{18}-\frac{1}{32}a^{14}-\frac{3}{128}a^{12}-\frac{1}{8}a^{10}+\frac{3}{32}a^{8}-\frac{1}{2}a^{6}+\frac{3}{8}a^{4}$, $\frac{1}{128}a^{19}-\frac{3}{128}a^{13}-\frac{1}{2}a$, $\frac{1}{128}a^{20}-\frac{3}{128}a^{14}-\frac{1}{2}a^{2}$, $\frac{1}{256}a^{21}-\frac{1}{256}a^{19}+\frac{1}{256}a^{15}-\frac{1}{32}a^{14}+\frac{3}{256}a^{13}-\frac{1}{16}a^{12}-\frac{1}{16}a^{11}-\frac{1}{8}a^{10}-\frac{3}{64}a^{9}+\frac{3}{32}a^{8}+\frac{1}{4}a^{7}+\frac{3}{16}a^{6}-\frac{5}{16}a^{5}+\frac{3}{8}a^{4}-\frac{1}{4}a^{3}$, $\frac{1}{256}a^{22}-\frac{1}{256}a^{20}+\frac{1}{256}a^{16}+\frac{3}{256}a^{14}-\frac{1}{16}a^{12}-\frac{3}{64}a^{10}-\frac{1}{4}a^{8}-\frac{5}{16}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{512}a^{23}-\frac{1}{512}a^{21}-\frac{1}{256}a^{19}+\frac{1}{512}a^{17}-\frac{5}{512}a^{15}-\frac{5}{256}a^{13}-\frac{1}{16}a^{12}+\frac{5}{128}a^{11}-\frac{1}{8}a^{10}+\frac{11}{64}a^{9}-\frac{1}{4}a^{8}+\frac{3}{32}a^{7}+\frac{3}{16}a^{6}-\frac{5}{16}a^{5}+\frac{3}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{5120}a^{24}-\frac{1}{1024}a^{22}-\frac{1}{512}a^{20}+\frac{1}{1024}a^{18}-\frac{5}{1024}a^{16}-\frac{13}{512}a^{14}-\frac{39}{640}a^{12}+\frac{3}{128}a^{10}-\frac{5}{32}a^{8}-\frac{1}{2}a^{7}+\frac{13}{32}a^{6}+\frac{7}{16}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{5}$, $\frac{1}{5120}a^{25}-\frac{1}{1024}a^{23}-\frac{1}{512}a^{21}+\frac{1}{1024}a^{19}+\frac{3}{1024}a^{17}+\frac{3}{512}a^{15}-\frac{19}{640}a^{13}-\frac{1}{16}a^{12}-\frac{1}{8}a^{10}+\frac{1}{8}a^{9}-\frac{1}{4}a^{8}-\frac{3}{16}a^{7}+\frac{3}{16}a^{6}-\frac{1}{16}a^{5}+\frac{3}{8}a^{4}+\frac{3}{8}a^{3}-\frac{1}{4}a^{2}+\frac{3}{10}a$, $\frac{1}{10240}a^{26}-\frac{1}{10240}a^{24}+\frac{1}{1024}a^{22}-\frac{7}{2048}a^{20}-\frac{1}{2048}a^{18}-\frac{3}{1024}a^{16}-\frac{3}{160}a^{14}+\frac{19}{1280}a^{12}-\frac{1}{8}a^{10}-\frac{1}{4}a^{9}+\frac{13}{64}a^{8}+\frac{5}{32}a^{6}+\frac{3}{8}a^{4}-\frac{1}{4}a^{3}+\frac{2}{5}a^{2}-\frac{2}{5}$, $\frac{1}{10240}a^{27}-\frac{1}{10240}a^{25}-\frac{1}{1024}a^{23}-\frac{3}{2048}a^{21}+\frac{7}{2048}a^{19}+\frac{3}{1024}a^{17}-\frac{23}{2560}a^{15}+\frac{1}{320}a^{13}-\frac{1}{16}a^{11}-\frac{3}{32}a^{9}-\frac{11}{32}a^{7}-\frac{3}{16}a^{5}+\frac{11}{40}a^{3}-\frac{2}{5}a$, $\frac{1}{20480}a^{28}-\frac{1}{20480}a^{26}-\frac{1}{10240}a^{24}+\frac{5}{4096}a^{22}-\frac{9}{4096}a^{20}+\frac{7}{2048}a^{18}+\frac{27}{5120}a^{16}+\frac{17}{1280}a^{14}-\frac{9}{320}a^{12}-\frac{3}{32}a^{10}-\frac{1}{4}a^{9}-\frac{11}{64}a^{8}-\frac{5}{32}a^{6}+\frac{21}{80}a^{4}-\frac{1}{4}a^{3}+\frac{3}{10}a^{2}-\frac{2}{5}$, $\frac{1}{40960}a^{29}+\frac{1}{40960}a^{27}-\frac{1}{10240}a^{25}-\frac{7}{8192}a^{23}-\frac{7}{8192}a^{21}-\frac{5}{2048}a^{19}-\frac{1}{1280}a^{17}+\frac{9}{1280}a^{15}-\frac{1}{32}a^{14}-\frac{67}{2560}a^{13}-\frac{1}{16}a^{12}-\frac{3}{128}a^{11}-\frac{1}{8}a^{10}-\frac{5}{32}a^{9}+\frac{3}{32}a^{8}+\frac{3}{32}a^{7}+\frac{3}{16}a^{6}+\frac{41}{160}a^{5}+\frac{3}{8}a^{4}-\frac{3}{20}a^{3}-\frac{2}{5}a$, $\frac{1}{10485760}a^{30}-\frac{47}{10485760}a^{28}+\frac{101}{2621440}a^{26}-\frac{523}{10485760}a^{24}-\frac{2343}{2097152}a^{22}-\frac{1799}{524288}a^{20}+\frac{891}{1310720}a^{18}-\frac{4621}{655360}a^{16}+\frac{10127}{655360}a^{14}+\frac{4567}{81920}a^{12}-\frac{1651}{16384}a^{10}-\frac{277}{2048}a^{8}-\frac{1}{2}a^{7}+\frac{10321}{40960}a^{6}-\frac{211}{1280}a^{4}-\frac{19}{40}a^{2}-\frac{1}{2}a-\frac{187}{640}$, $\frac{1}{20971520}a^{31}-\frac{47}{20971520}a^{29}+\frac{101}{5242880}a^{27}+\frac{305}{4194304}a^{25}+\frac{3801}{4194304}a^{23}-\frac{775}{1048576}a^{21}-\frac{8069}{2621440}a^{19}+\frac{4979}{1310720}a^{17}+\frac{6287}{1310720}a^{15}-\frac{1}{32}a^{14}+\frac{299}{32768}a^{13}-\frac{1}{16}a^{12}-\frac{755}{32768}a^{11}-\frac{1}{8}a^{10}-\frac{789}{4096}a^{9}+\frac{3}{32}a^{8}+\frac{26961}{81920}a^{7}+\frac{3}{16}a^{6}+\frac{829}{2560}a^{5}+\frac{3}{8}a^{4}+\frac{11}{80}a^{3}+\frac{65}{256}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{6}\times C_{12}$, which has order $144$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $144$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1409}{20971520} a^{31} + \frac{3409}{20971520} a^{29} + \frac{97}{1048576} a^{27} + \frac{373}{20971520} a^{25} - \frac{1959}{4194304} a^{23} - \frac{2951}{1048576} a^{21} - \frac{14341}{2621440} a^{19} - \frac{6413}{1310720} a^{17} - \frac{2813}{262144} a^{15} - \frac{6697}{163840} a^{13} - \frac{2419}{32768} a^{11} + \frac{43}{4096} a^{9} + \frac{5329}{81920} a^{7} + \frac{957}{2560} a^{5} + \frac{29}{16} a^{3} + \frac{2757}{1280} a \)  (order $12$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{2173}{10485760}a^{30}+\frac{13069}{10485760}a^{28}+\frac{605}{524288}a^{26}+\frac{161}{10485760}a^{24}+\frac{2549}{2097152}a^{22}-\frac{5099}{524288}a^{20}-\frac{41457}{1310720}a^{18}-\frac{18393}{655360}a^{16}-\frac{7689}{131072}a^{14}-\frac{14789}{81920}a^{12}-\frac{8615}{16384}a^{10}-\frac{577}{2048}a^{8}+\frac{13453}{40960}a^{6}+\frac{377}{1280}a^{4}+\frac{59}{8}a^{2}+\frac{10289}{640}$, $\frac{1409}{20971520}a^{31}+\frac{3409}{20971520}a^{29}+\frac{97}{1048576}a^{27}+\frac{373}{20971520}a^{25}-\frac{1959}{4194304}a^{23}-\frac{2951}{1048576}a^{21}-\frac{14341}{2621440}a^{19}-\frac{6413}{1310720}a^{17}-\frac{2813}{262144}a^{15}-\frac{6697}{163840}a^{13}-\frac{2419}{32768}a^{11}+\frac{43}{4096}a^{9}+\frac{5329}{81920}a^{7}+\frac{957}{2560}a^{5}+\frac{29}{16}a^{3}+\frac{2757}{1280}a+1$, $\frac{579}{1310720}a^{31}-\frac{1527}{10485760}a^{30}+\frac{1779}{1310720}a^{29}-\frac{4007}{10485760}a^{28}+\frac{51}{65536}a^{27}-\frac{371}{2621440}a^{26}+\frac{799}{1310720}a^{25}+\frac{185}{2097152}a^{24}+\frac{11}{262144}a^{23}+\frac{1953}{2097152}a^{22}-\frac{1093}{65536}a^{21}+\frac{3009}{524288}a^{20}-\frac{5391}{163840}a^{19}+\frac{14803}{1310720}a^{18}-\frac{2983}{81920}a^{17}+\frac{8459}{655360}a^{16}-\frac{1175}{16384}a^{15}+\frac{11783}{655360}a^{14}-\frac{2771}{10240}a^{13}+\frac{1347}{16384}a^{12}-\frac{1097}{2048}a^{11}+\frac{2293}{16384}a^{10}-\frac{15}{256}a^{9}-\frac{93}{2048}a^{8}+\frac{979}{5120}a^{7}-\frac{9767}{40960}a^{6}+\frac{237}{160}a^{5}-\frac{1131}{1280}a^{4}+11a^{3}-\frac{131}{40}a^{2}+\frac{1071}{80}a-\frac{567}{128}$, $\frac{579}{1310720}a^{31}+\frac{1527}{10485760}a^{30}+\frac{1779}{1310720}a^{29}+\frac{4007}{10485760}a^{28}+\frac{51}{65536}a^{27}+\frac{371}{2621440}a^{26}+\frac{799}{1310720}a^{25}-\frac{185}{2097152}a^{24}+\frac{11}{262144}a^{23}-\frac{1953}{2097152}a^{22}-\frac{1093}{65536}a^{21}-\frac{3009}{524288}a^{20}-\frac{5391}{163840}a^{19}-\frac{14803}{1310720}a^{18}-\frac{2983}{81920}a^{17}-\frac{8459}{655360}a^{16}-\frac{1175}{16384}a^{15}-\frac{11783}{655360}a^{14}-\frac{2771}{10240}a^{13}-\frac{1347}{16384}a^{12}-\frac{1097}{2048}a^{11}-\frac{2293}{16384}a^{10}-\frac{15}{256}a^{9}+\frac{93}{2048}a^{8}+\frac{979}{5120}a^{7}+\frac{9767}{40960}a^{6}+\frac{237}{160}a^{5}+\frac{1131}{1280}a^{4}+11a^{3}+\frac{131}{40}a^{2}+\frac{1071}{80}a+\frac{567}{128}$, $\frac{14667}{10485760}a^{30}+\frac{49979}{10485760}a^{28}+\frac{7831}{2621440}a^{26}+\frac{2651}{2097152}a^{24}-\frac{3437}{2097152}a^{22}-\frac{30221}{524288}a^{20}-\frac{161783}{1310720}a^{18}-\frac{85583}{655360}a^{16}-\frac{164123}{655360}a^{14}-\frac{14823}{16384}a^{12}-\frac{30257}{16384}a^{10}-\frac{487}{2048}a^{8}+\frac{47547}{40960}a^{6}+\frac{6847}{1280}a^{4}+\frac{1531}{40}a^{2}+\frac{6667}{128}$, $\frac{5653}{20971520}a^{31}-\frac{17}{5242880}a^{30}+\frac{18469}{20971520}a^{29}-\frac{1761}{5242880}a^{28}+\frac{501}{1048576}a^{27}-\frac{821}{1310720}a^{26}-\frac{251}{4194304}a^{25}-\frac{1349}{5242880}a^{24}-\frac{3123}{4194304}a^{23}-\frac{1641}{1048576}a^{22}-\frac{12819}{1048576}a^{21}-\frac{265}{262144}a^{20}-\frac{63977}{2621440}a^{19}+\frac{4053}{655360}a^{18}-\frac{35473}{1310720}a^{17}+\frac{1117}{327680}a^{16}-\frac{13633}{262144}a^{15}+\frac{4993}{327680}a^{14}-\frac{5689}{32768}a^{13}+\frac{1401}{40960}a^{12}-\frac{10991}{32768}a^{11}+\frac{1315}{8192}a^{10}+\frac{135}{4096}a^{9}+\frac{293}{1024}a^{8}+\frac{34213}{81920}a^{7}+\frac{2463}{20480}a^{6}+\frac{3057}{2560}a^{5}+\frac{387}{640}a^{4}+\frac{127}{16}a^{3}-\frac{3}{10}a^{2}+\frac{2645}{256}a-\frac{1621}{320}$, $\frac{817}{2097152}a^{31}-\frac{585}{2097152}a^{30}+\frac{11781}{10485760}a^{29}-\frac{4349}{10485760}a^{28}+\frac{341}{524288}a^{27}-\frac{129}{2621440}a^{26}+\frac{741}{2097152}a^{25}-\frac{2129}{10485760}a^{24}-\frac{1875}{2097152}a^{23}+\frac{4251}{2097152}a^{22}-\frac{8115}{524288}a^{21}+\frac{5243}{524288}a^{20}-\frac{8053}{262144}a^{19}+\frac{3053}{262144}a^{18}-\frac{19697}{655360}a^{17}+\frac{11273}{655360}a^{16}-\frac{8353}{131072}a^{15}+\frac{17437}{655360}a^{14}-\frac{3929}{16384}a^{13}+\frac{11061}{81920}a^{12}-\frac{6927}{16384}a^{11}+\frac{2167}{16384}a^{10}-\frac{25}{2048}a^{9}-\frac{335}{2048}a^{8}+\frac{2177}{8192}a^{7}-\frac{1561}{8192}a^{6}+\frac{2433}{1280}a^{5}-\frac{2217}{1280}a^{4}+\frac{81}{8}a^{3}-\frac{249}{40}a^{2}+\frac{1589}{128}a-\frac{1761}{640}$, $\frac{4259}{5242880}a^{31}+\frac{145}{2097152}a^{30}+\frac{12691}{5242880}a^{29}+\frac{11493}{10485760}a^{28}+\frac{419}{262144}a^{27}+\frac{3721}{2621440}a^{26}+\frac{9471}{5242880}a^{25}+\frac{5849}{10485760}a^{24}-\frac{85}{1048576}a^{23}+\frac{7821}{2097152}a^{22}-\frac{7317}{262144}a^{21}-\frac{1619}{524288}a^{20}-\frac{35951}{655360}a^{19}-\frac{5973}{262144}a^{18}-\frac{20807}{327680}a^{17}-\frac{10321}{655360}a^{16}-\frac{8599}{65536}a^{15}-\frac{26373}{655360}a^{14}-\frac{20299}{40960}a^{13}-\frac{10461}{81920}a^{12}-\frac{7929}{8192}a^{11}-\frac{8239}{16384}a^{10}-\frac{271}{1024}a^{9}-\frac{1145}{2048}a^{8}+\frac{19}{20480}a^{7}-\frac{1311}{8192}a^{6}+\frac{1563}{640}a^{5}-\frac{1551}{1280}a^{4}+\frac{75}{4}a^{3}+\frac{141}{40}a^{2}+\frac{7279}{320}a+\frac{8681}{640}$, $\frac{195}{4194304}a^{31}-\frac{4409}{10485760}a^{30}+\frac{7423}{20971520}a^{29}-\frac{14473}{10485760}a^{28}+\frac{2219}{5242880}a^{27}-\frac{2301}{2621440}a^{26}+\frac{4123}{20971520}a^{25}-\frac{5261}{10485760}a^{24}+\frac{3191}{4194304}a^{23}+\frac{1711}{2097152}a^{22}-\frac{1961}{1048576}a^{21}+\frac{9743}{524288}a^{20}-\frac{3663}{524288}a^{19}+\frac{49181}{1310720}a^{18}-\frac{4611}{1310720}a^{17}+\frac{26981}{655360}a^{16}-\frac{14687}{1310720}a^{15}+\frac{51753}{655360}a^{14}-\frac{9127}{163840}a^{13}+\frac{21409}{81920}a^{12}-\frac{6269}{32768}a^{11}+\frac{8091}{16384}a^{10}-\frac{699}{4096}a^{9}-\frac{51}{2048}a^{8}-\frac{333}{16384}a^{7}-\frac{12809}{40960}a^{6}-\frac{301}{2560}a^{5}-\frac{2069}{1280}a^{4}+\frac{169}{80}a^{3}-\frac{461}{40}a^{2}+\frac{6347}{1280}a-\frac{9309}{640}$, $\frac{41447}{20971520}a^{31}+\frac{9969}{10485760}a^{30}+\frac{23275}{4194304}a^{29}+\frac{43457}{10485760}a^{28}+\frac{14883}{5242880}a^{27}+\frac{8213}{2621440}a^{26}+\frac{48403}{20971520}a^{25}+\frac{3493}{10485760}a^{24}-\frac{16689}{4194304}a^{23}+\frac{2121}{2097152}a^{22}-\frac{77905}{1048576}a^{21}-\frac{22679}{524288}a^{20}-\frac{364803}{2621440}a^{19}-\frac{144821}{1310720}a^{18}-\frac{40255}{262144}a^{17}-\frac{71229}{655360}a^{16}-\frac{409079}{1310720}a^{15}-\frac{135009}{655360}a^{14}-\frac{194047}{163840}a^{13}-\frac{57817}{81920}a^{12}-\frac{69445}{32768}a^{11}-\frac{27587}{16384}a^{10}+\frac{141}{4096}a^{9}-\frac{1061}{2048}a^{8}+\frac{79127}{81920}a^{7}+\frac{57409}{40960}a^{6}+\frac{4175}{512}a^{5}+\frac{3981}{1280}a^{4}+\frac{3873}{80}a^{3}+\frac{1213}{40}a^{2}+\frac{69187}{1280}a+\frac{32757}{640}$, $\frac{22437}{10485760}a^{31}-\frac{3501}{10485760}a^{30}+\frac{72373}{10485760}a^{29}-\frac{21821}{10485760}a^{28}+\frac{11673}{2621440}a^{27}-\frac{5953}{2621440}a^{26}+\frac{36329}{10485760}a^{25}-\frac{10129}{10485760}a^{24}-\frac{1315}{2097152}a^{23}-\frac{9637}{2097152}a^{22}-\frac{41731}{524288}a^{21}+\frac{7355}{524288}a^{20}-\frac{217913}{1310720}a^{19}+\frac{61409}{1310720}a^{18}-\frac{120161}{655360}a^{17}+\frac{31817}{655360}a^{16}-\frac{241109}{655360}a^{15}+\frac{68189}{655360}a^{14}-\frac{112301}{81920}a^{13}+\frac{25781}{81920}a^{12}-\frac{45471}{16384}a^{11}+\frac{15415}{16384}a^{10}-\frac{1097}{2048}a^{9}+\frac{1457}{2048}a^{8}+\frac{33077}{40960}a^{7}-\frac{5821}{40960}a^{6}+\frac{9329}{1280}a^{5}+\frac{647}{1280}a^{4}+\frac{1079}{20}a^{3}-\frac{443}{40}a^{2}+\frac{44921}{640}a-\frac{16161}{640}$, $\frac{5367}{10485760}a^{31}-\frac{71}{10485760}a^{30}+\frac{17063}{10485760}a^{29}-\frac{5367}{10485760}a^{28}+\frac{1907}{2621440}a^{27}-\frac{2179}{2621440}a^{26}-\frac{157}{10485760}a^{25}-\frac{3827}{10485760}a^{24}-\frac{3233}{2097152}a^{23}-\frac{4143}{2097152}a^{22}-\frac{11713}{524288}a^{21}-\frac{399}{524288}a^{20}-\frac{58323}{1310720}a^{19}+\frac{8419}{1310720}a^{18}-\frac{32011}{655360}a^{17}+\frac{4379}{655360}a^{16}-\frac{62471}{655360}a^{15}+\frac{10327}{655360}a^{14}-\frac{26447}{81920}a^{13}+\frac{3103}{81920}a^{12}-\frac{10229}{16384}a^{11}+\frac{4197}{16384}a^{10}+\frac{157}{2048}a^{9}+\frac{659}{2048}a^{8}+\frac{28967}{40960}a^{7}+\frac{649}{40960}a^{6}+\frac{3019}{1280}a^{5}+\frac{1189}{1280}a^{4}+\frac{143}{10}a^{3}-\frac{29}{40}a^{2}+\frac{11987}{640}a-\frac{4003}{640}$, $\frac{17757}{20971520}a^{31}+\frac{5981}{10485760}a^{30}+\frac{45549}{20971520}a^{29}+\frac{14829}{10485760}a^{28}+\frac{4913}{5242880}a^{27}+\frac{2737}{2621440}a^{26}+\frac{13057}{20971520}a^{25}+\frac{3533}{2097152}a^{24}-\frac{12331}{4194304}a^{23}+\frac{2005}{2097152}a^{22}-\frac{33547}{1048576}a^{21}-\frac{8075}{524288}a^{20}-\frac{151633}{2621440}a^{19}-\frac{36689}{1310720}a^{18}-\frac{87353}{1310720}a^{17}-\frac{22073}{655360}a^{16}-\frac{164109}{1310720}a^{15}-\frac{51981}{655360}a^{14}-\frac{82213}{163840}a^{13}-\frac{5729}{16384}a^{12}-\frac{26951}{32768}a^{11}-\frac{9543}{16384}a^{10}+\frac{607}{4096}a^{9}-\frac{417}{2048}a^{8}+\frac{44397}{81920}a^{7}-\frac{18579}{40960}a^{6}+\frac{10297}{2560}a^{5}+\frac{1897}{1280}a^{4}+\frac{1653}{80}a^{3}+\frac{437}{40}a^{2}+\frac{27793}{1280}a+\frac{1309}{128}$, $\frac{9221}{20971520}a^{31}+\frac{39189}{20971520}a^{29}+\frac{7033}{5242880}a^{27}+\frac{501}{4194304}a^{25}+\frac{1085}{4194304}a^{23}-\frac{20899}{1048576}a^{21}-\frac{129689}{2621440}a^{19}-\frac{60353}{1310720}a^{17}-\frac{118069}{1310720}a^{15}-\frac{10217}{32768}a^{13}-\frac{24255}{32768}a^{11}-\frac{681}{4096}a^{9}+\frac{56981}{81920}a^{7}+\frac{4257}{2560}a^{5}+\frac{1133}{80}a^{3}+\frac{5957}{256}a$, $\frac{3417}{5242880}a^{30}+\frac{12201}{5242880}a^{28}+\frac{2269}{1310720}a^{26}+\frac{10029}{5242880}a^{24}+\frac{2417}{1048576}a^{22}-\frac{5551}{262144}a^{20}-\frac{28093}{655360}a^{18}-\frac{17157}{327680}a^{16}-\frac{36937}{327680}a^{14}-\frac{17761}{40960}a^{12}-\frac{8059}{8192}a^{10}-\frac{333}{1024}a^{8}-\frac{6103}{20480}a^{6}+\frac{653}{640}a^{4}+\frac{299}{20}a^{2}+\frac{6141}{320}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2519992645123.5127 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 2519992645123.5127 \cdot 144}{12\cdot\sqrt{26255893369003065702238822824526479360000000000000000}}\cr\approx \mathstrut & 1.10114627264127 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 + 5*x^30 + 8*x^28 + 5*x^26 + x^24 - 40*x^22 - 152*x^20 - 240*x^18 - 336*x^16 - 960*x^14 - 2432*x^12 - 2560*x^10 + 256*x^8 + 5120*x^6 + 32768*x^4 + 81920*x^2 + 65536)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 + 5*x^30 + 8*x^28 + 5*x^26 + x^24 - 40*x^22 - 152*x^20 - 240*x^18 - 336*x^16 - 960*x^14 - 2432*x^12 - 2560*x^10 + 256*x^8 + 5120*x^6 + 32768*x^4 + 81920*x^2 + 65536, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 + 5*x^30 + 8*x^28 + 5*x^26 + x^24 - 40*x^22 - 152*x^20 - 240*x^18 - 336*x^16 - 960*x^14 - 2432*x^12 - 2560*x^10 + 256*x^8 + 5120*x^6 + 32768*x^4 + 81920*x^2 + 65536);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 + 5*x^30 + 8*x^28 + 5*x^26 + x^24 - 40*x^22 - 152*x^20 - 240*x^18 - 336*x^16 - 960*x^14 - 2432*x^12 - 2560*x^10 + 256*x^8 + 5120*x^6 + 32768*x^4 + 81920*x^2 + 65536);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4^2:C_2^3$ (as 32T12882):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 512
The 80 conjugacy class representatives for $D_4^2:C_2^3$
Character table for $D_4^2:C_2^3$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{3}, \sqrt{5})\), 4.4.320400.1, 4.0.35600.3, \(\Q(i, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(i, \sqrt{15})\), 4.0.20025.1, 4.4.2225.1, 8.8.102656160000.1, 8.0.102656160000.21, 8.0.12960000.1, 8.0.102656160000.10, 8.0.102656160000.5, 8.0.1267360000.3, 8.0.401000625.1, 8.0.3182340960000.1, 8.0.2455510000.1, 8.8.198896310000.1, 8.8.39288160000.1, 16.0.10538287185945600000000.2, 16.0.162036703771099545600000000.2, 16.16.162036703771099545600000000.1, 16.0.162036703771099545600000000.1, 16.0.24696952258969600000000.1, 16.0.39559742131616100000000.1, 16.0.10127293985693721600000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.8.0.1}{8} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{8}$ ${\href{/padicField/13.8.0.1}{8} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.2.0.1}{2} }^{16}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ ${\href{/padicField/29.2.0.1}{2} }^{16}$ R ${\href{/padicField/37.8.0.1}{8} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.8.12.13$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.8.12.13$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$$4$$2$$12$$D_4$$[2, 2]^{2}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(31\) Copy content Toggle raw display 31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.2.1$x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.0.1$x^{4} + 3 x^{2} + 16 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
31.4.0.1$x^{4} + 3 x^{2} + 16 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
31.4.0.1$x^{4} + 3 x^{2} + 16 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
31.4.0.1$x^{4} + 3 x^{2} + 16 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
\(89\) Copy content Toggle raw display 89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$