Normalized defining polynomial
\( x^{32} - 2 x^{31} - 39 x^{30} + 78 x^{29} + 678 x^{28} - 1336 x^{27} - 6933 x^{26} + 13256 x^{25} + \cdots + 256 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(2553263220825544945190771147906377486172160000000000000000\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{16}\cdot 29^{8}\cdot 1289^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(62.23\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{1/2}29^{1/2}1289^{1/2}\approx 2117.9518408122503$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(29\), \(1289\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{4}a^{18}-\frac{1}{2}a^{17}-\frac{1}{4}a^{16}-\frac{1}{2}a^{15}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}+\frac{1}{4}a^{8}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{17}-\frac{1}{4}a^{13}-\frac{1}{2}a^{12}-\frac{1}{4}a^{11}-\frac{1}{2}a^{10}+\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{20}-\frac{1}{8}a^{19}+\frac{1}{16}a^{18}-\frac{1}{8}a^{17}-\frac{3}{8}a^{16}+\frac{7}{16}a^{14}+\frac{1}{16}a^{12}-\frac{1}{4}a^{11}+\frac{3}{16}a^{10}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{7}{16}a^{6}-\frac{1}{8}a^{5}+\frac{3}{16}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{16}a^{21}+\frac{1}{16}a^{19}+\frac{1}{8}a^{17}+\frac{1}{4}a^{16}+\frac{7}{16}a^{15}-\frac{1}{8}a^{14}-\frac{3}{16}a^{13}+\frac{3}{8}a^{12}+\frac{7}{16}a^{11}-\frac{3}{8}a^{10}-\frac{3}{8}a^{9}+\frac{3}{8}a^{8}-\frac{3}{16}a^{7}-\frac{1}{2}a^{6}+\frac{3}{16}a^{5}+\frac{1}{8}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{64}a^{22}-\frac{1}{32}a^{21}-\frac{1}{64}a^{20}+\frac{1}{32}a^{19}-\frac{1}{8}a^{18}-\frac{7}{16}a^{17}-\frac{13}{64}a^{16}-\frac{1}{4}a^{15}-\frac{29}{64}a^{14}-\frac{1}{16}a^{13}-\frac{31}{64}a^{12}-\frac{7}{16}a^{11}-\frac{3}{8}a^{10}+\frac{5}{32}a^{9}+\frac{29}{64}a^{8}-\frac{11}{32}a^{7}+\frac{17}{64}a^{6}+\frac{1}{4}a^{5}+\frac{1}{32}a^{4}-\frac{3}{8}a^{3}+\frac{3}{16}a^{2}+\frac{1}{8}$, $\frac{1}{64}a^{23}-\frac{1}{64}a^{21}+\frac{1}{16}a^{18}-\frac{29}{64}a^{17}-\frac{5}{32}a^{16}-\frac{1}{64}a^{15}-\frac{3}{32}a^{14}+\frac{13}{64}a^{13}+\frac{7}{32}a^{12}+\frac{3}{16}a^{11}+\frac{9}{32}a^{10}+\frac{25}{64}a^{9}-\frac{5}{16}a^{8}+\frac{25}{64}a^{7}+\frac{9}{32}a^{6}+\frac{7}{32}a^{5}-\frac{7}{16}a^{4}+\frac{3}{16}a^{3}-\frac{3}{8}a^{2}+\frac{3}{8}a+\frac{1}{4}$, $\frac{1}{256}a^{24}-\frac{1}{128}a^{23}+\frac{1}{256}a^{22}-\frac{1}{128}a^{21}+\frac{3}{128}a^{20}+\frac{1}{32}a^{19}-\frac{13}{256}a^{18}-\frac{5}{32}a^{17}-\frac{87}{256}a^{16}+\frac{23}{64}a^{15}+\frac{87}{256}a^{14}-\frac{25}{64}a^{13}+\frac{61}{128}a^{12}-\frac{55}{128}a^{11}-\frac{99}{256}a^{10}-\frac{1}{128}a^{9}+\frac{107}{256}a^{8}+\frac{1}{64}a^{7}-\frac{3}{64}a^{6}+\frac{13}{32}a^{5}+\frac{1}{4}a^{4}+\frac{1}{16}a^{3}+\frac{3}{8}a^{2}+\frac{5}{16}$, $\frac{1}{256}a^{25}+\frac{1}{256}a^{23}-\frac{1}{128}a^{21}+\frac{1}{64}a^{20}-\frac{29}{256}a^{19}-\frac{1}{128}a^{18}-\frac{59}{256}a^{17}-\frac{45}{128}a^{16}-\frac{117}{256}a^{15}-\frac{31}{128}a^{14}+\frac{19}{128}a^{13}-\frac{9}{128}a^{12}+\frac{113}{256}a^{11}-\frac{7}{16}a^{10}-\frac{53}{256}a^{9}+\frac{53}{128}a^{8}+\frac{1}{4}a^{7}-\frac{15}{32}a^{6}-\frac{11}{32}a^{5}+\frac{3}{16}a^{4}+\frac{3}{16}a^{3}-\frac{3}{8}a^{2}+\frac{3}{16}a-\frac{3}{8}$, $\frac{1}{1024}a^{26}-\frac{1}{512}a^{25}-\frac{1}{1024}a^{24}+\frac{1}{512}a^{23}+\frac{1}{256}a^{22}+\frac{3}{256}a^{21}-\frac{25}{1024}a^{20}-\frac{7}{128}a^{19}-\frac{61}{1024}a^{18}+\frac{43}{256}a^{17}-\frac{507}{1024}a^{16}+\frac{121}{256}a^{15}-\frac{77}{256}a^{14}-\frac{211}{512}a^{13}-\frac{343}{1024}a^{12}-\frac{19}{512}a^{11}-\frac{207}{1024}a^{10}-\frac{63}{128}a^{9}+\frac{143}{512}a^{8}+\frac{11}{32}a^{7}+\frac{43}{128}a^{6}+\frac{1}{16}a^{5}-\frac{1}{32}a^{4}-\frac{9}{32}a^{3}-\frac{7}{64}a^{2}-\frac{1}{2}a-\frac{5}{32}$, $\frac{1}{259072}a^{27}-\frac{29}{129536}a^{26}-\frac{365}{259072}a^{25}-\frac{237}{129536}a^{24}+\frac{27}{16192}a^{23}+\frac{7}{32384}a^{22}-\frac{2345}{259072}a^{21}-\frac{801}{32384}a^{20}-\frac{2867}{23552}a^{19}+\frac{1}{368}a^{18}-\frac{39895}{259072}a^{17}+\frac{689}{1472}a^{16}+\frac{4023}{32384}a^{15}+\frac{57403}{129536}a^{14}-\frac{89359}{259072}a^{13}-\frac{41271}{129536}a^{12}+\frac{64637}{259072}a^{11}+\frac{24939}{64768}a^{10}+\frac{21265}{129536}a^{9}+\frac{233}{2816}a^{8}+\frac{273}{2944}a^{7}-\frac{871}{16192}a^{6}+\frac{527}{2024}a^{5}+\frac{95}{8096}a^{4}+\frac{6909}{16192}a^{3}+\frac{945}{2024}a^{2}+\frac{3637}{8096}a-\frac{279}{4048}$, $\frac{1}{1036288}a^{28}-\frac{1}{518144}a^{27}-\frac{71}{1036288}a^{26}-\frac{337}{518144}a^{25}-\frac{659}{518144}a^{24}-\frac{129}{64768}a^{23}-\frac{5281}{1036288}a^{22}-\frac{2}{253}a^{21}-\frac{5319}{1036288}a^{20}-\frac{815}{23552}a^{19}-\frac{56637}{1036288}a^{18}+\frac{108587}{259072}a^{17}-\frac{146961}{518144}a^{16}-\frac{145031}{518144}a^{15}-\frac{11535}{1036288}a^{14}+\frac{173391}{518144}a^{13}-\frac{305797}{1036288}a^{12}-\frac{102889}{259072}a^{11}+\frac{5265}{129536}a^{10}-\frac{5825}{16192}a^{9}-\frac{112099}{259072}a^{8}-\frac{8}{253}a^{7}+\frac{1233}{64768}a^{6}+\frac{12895}{32384}a^{5}-\frac{381}{2816}a^{4}+\frac{4247}{16192}a^{3}+\frac{103}{506}a^{2}-\frac{1239}{4048}a-\frac{7781}{16192}$, $\frac{1}{1036288}a^{29}+\frac{1}{1036288}a^{27}-\frac{41}{259072}a^{26}-\frac{1}{22528}a^{25}-\frac{157}{129536}a^{24}+\frac{1159}{1036288}a^{23}+\frac{77}{47104}a^{22}+\frac{30813}{1036288}a^{21}+\frac{5981}{518144}a^{20}+\frac{33167}{1036288}a^{19}+\frac{1169}{22528}a^{18}-\frac{15093}{47104}a^{17}-\frac{184039}{518144}a^{16}+\frac{1871}{94208}a^{15}-\frac{48871}{129536}a^{14}-\frac{167573}{1036288}a^{13}-\frac{164361}{518144}a^{12}+\frac{61841}{259072}a^{11}+\frac{94981}{259072}a^{10}-\frac{59173}{259072}a^{9}-\frac{1919}{8096}a^{8}+\frac{437}{2816}a^{7}-\frac{14163}{32384}a^{6}-\frac{29423}{64768}a^{5}+\frac{6951}{32384}a^{4}+\frac{4923}{16192}a^{3}-\frac{2223}{16192}a^{2}-\frac{4975}{16192}a-\frac{969}{4048}$, $\frac{1}{1215470485504}a^{30}+\frac{2125}{9962872832}a^{29}+\frac{408967}{1215470485504}a^{28}+\frac{160675}{607735242752}a^{27}-\frac{34099743}{151933810688}a^{26}-\frac{49495381}{303867621376}a^{25}-\frac{1852121077}{1215470485504}a^{24}-\frac{1302164509}{303867621376}a^{23}-\frac{11873661}{1215470485504}a^{22}+\frac{3152367}{155669888}a^{21}-\frac{26067487063}{1215470485504}a^{20}+\frac{2960501469}{75966905344}a^{19}+\frac{2487609613}{37983452672}a^{18}-\frac{36046398039}{607735242752}a^{17}+\frac{488489803453}{1215470485504}a^{16}+\frac{8207226025}{26423271424}a^{15}-\frac{308679740247}{1215470485504}a^{14}-\frac{98258216445}{303867621376}a^{13}-\frac{244076121763}{607735242752}a^{12}+\frac{70939815829}{151933810688}a^{11}-\frac{144101067795}{303867621376}a^{10}+\frac{12128747809}{75966905344}a^{9}-\frac{58762869523}{151933810688}a^{8}+\frac{17321832753}{37983452672}a^{7}-\frac{20057929605}{75966905344}a^{6}+\frac{428437679}{1726520576}a^{5}-\frac{9353213121}{37983452672}a^{4}+\frac{4733706891}{9495863168}a^{3}-\frac{846176099}{1726520576}a^{2}+\frac{1266047621}{4747931584}a+\frac{1681704789}{9495863168}$, $\frac{1}{18\!\cdots\!72}a^{31}+\frac{18\!\cdots\!65}{10\!\cdots\!44}a^{30}-\frac{15\!\cdots\!07}{59\!\cdots\!12}a^{29}-\frac{27\!\cdots\!35}{10\!\cdots\!44}a^{28}+\frac{25\!\cdots\!43}{57\!\cdots\!96}a^{27}+\frac{36\!\cdots\!75}{14\!\cdots\!24}a^{26}-\frac{25\!\cdots\!33}{18\!\cdots\!72}a^{25}+\frac{81\!\cdots\!07}{46\!\cdots\!68}a^{24}-\frac{86\!\cdots\!81}{14\!\cdots\!44}a^{23}+\frac{25\!\cdots\!09}{46\!\cdots\!68}a^{22}-\frac{29\!\cdots\!33}{97\!\cdots\!88}a^{21}-\frac{50\!\cdots\!85}{46\!\cdots\!68}a^{20}-\frac{51\!\cdots\!73}{57\!\cdots\!96}a^{19}+\frac{97\!\cdots\!35}{92\!\cdots\!36}a^{18}+\frac{70\!\cdots\!09}{18\!\cdots\!72}a^{17}-\frac{26\!\cdots\!93}{92\!\cdots\!36}a^{16}-\frac{41\!\cdots\!77}{97\!\cdots\!88}a^{15}+\frac{79\!\cdots\!15}{23\!\cdots\!84}a^{14}-\frac{40\!\cdots\!63}{92\!\cdots\!36}a^{13}+\frac{98\!\cdots\!97}{46\!\cdots\!68}a^{12}+\frac{16\!\cdots\!45}{46\!\cdots\!68}a^{11}-\frac{25\!\cdots\!01}{14\!\cdots\!24}a^{10}+\frac{10\!\cdots\!77}{23\!\cdots\!84}a^{9}-\frac{47\!\cdots\!83}{11\!\cdots\!92}a^{8}-\frac{10\!\cdots\!09}{11\!\cdots\!92}a^{7}-\frac{45\!\cdots\!35}{14\!\cdots\!24}a^{6}+\frac{81\!\cdots\!27}{57\!\cdots\!96}a^{5}+\frac{91\!\cdots\!87}{28\!\cdots\!48}a^{4}-\frac{49\!\cdots\!93}{28\!\cdots\!48}a^{3}-\frac{74\!\cdots\!55}{36\!\cdots\!56}a^{2}-\frac{53\!\cdots\!43}{14\!\cdots\!24}a-\frac{10\!\cdots\!11}{72\!\cdots\!12}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{300}$, which has order $600$ (assuming GRH)
Relative class number: $600$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{15623078927132994153020968227312360013607667511}{70492896689837918837675324556886549758049254326272} a^{31} + \frac{26277284209249810411745601870917702929821}{57613323087075922263765924584232259648996736} a^{30} + \frac{19630218621882232531577915699443862779828317517}{2273964409349610285086300792157630637356427558912} a^{29} - \frac{8213685811158652772609401352565910289463675}{460906584696607378110127396673858077191973888} a^{28} - \frac{2640588094771048798896974476122008559191292579415}{17623224172459479709418831139221637439512313581568} a^{27} + \frac{5394284315875702335426169268706023257694651808373}{17623224172459479709418831139221637439512313581568} a^{26} + \frac{107802587918496735537287449608057761538324742843531}{70492896689837918837675324556886549758049254326272} a^{25} - \frac{107470511473289796131126329495042070944331893995845}{35246448344918959418837662278443274879024627163136} a^{24} - \frac{716217388192909151568177449841390614924232824404053}{70492896689837918837675324556886549758049254326272} a^{23} + \frac{688672246538889092021260315833924748581783431240737}{35246448344918959418837662278443274879024627163136} a^{22} + \frac{3215924356342489559802462182942880409248681285438857}{70492896689837918837675324556886549758049254326272} a^{21} - \frac{2980882985009998253838262730206202407515132622295965}{35246448344918959418837662278443274879024627163136} a^{20} - \frac{1213314536604644561364993107238167245984403462984883}{8811612086229739854709415569610818719756156790784} a^{19} + \frac{8872700377578395981450005385710477785851231394630701}{35246448344918959418837662278443274879024627163136} a^{18} + \frac{18947168858959377147573333293861995733597034834784145}{70492896689837918837675324556886549758049254326272} a^{17} - \frac{8422853351941513886510749185988321120632635763919847}{17623224172459479709418831139221637439512313581568} a^{16} - \frac{29071820828813230387959896915797820894169053792337571}{70492896689837918837675324556886549758049254326272} a^{15} + \frac{8988401867184905678650864095489927716572850417082577}{35246448344918959418837662278443274879024627163136} a^{14} + \frac{48868061612447585534615365949015751910258570761130869}{35246448344918959418837662278443274879024627163136} a^{13} + \frac{8914446522687563800913041375129094307774793476420531}{17623224172459479709418831139221637439512313581568} a^{12} - \frac{47881241068673437028085367700527214894072564537033895}{17623224172459479709418831139221637439512313581568} a^{11} + \frac{25779996963028935191023800194439297412599751568995919}{8811612086229739854709415569610818719756156790784} a^{10} - \frac{78902839354650737751911114554601278182565779513757403}{8811612086229739854709415569610818719756156790784} a^{9} + \frac{5741768410718039177401044143197997217620301625418797}{4405806043114869927354707784805409359878078395392} a^{8} - \frac{51335686866447846677262228894428413401510447787960937}{4405806043114869927354707784805409359878078395392} a^{7} + \frac{289137981396013065095198334052771618408249099729527}{2202903021557434963677353892402704679939039197696} a^{6} - \frac{9525304327026037241529530331831698426742585283758761}{2202903021557434963677353892402704679939039197696} a^{5} - \frac{114345293778202668635550596095866284027519377316275}{1101451510778717481838676946201352339969519598848} a^{4} - \frac{671239312231561918433847661896339163230299580054045}{1101451510778717481838676946201352339969519598848} a^{3} - \frac{7447182255492958585822460705397301816235861617851}{550725755389358740919338473100676169984759799424} a^{2} - \frac{14577577068979001864306742076991647790402377886651}{550725755389358740919338473100676169984759799424} a + \frac{136203758046183995061720650256985057261885796759}{275362877694679370459669236550338084992379899712} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{96\!\cdots\!13}{39\!\cdots\!36}a^{31}-\frac{17\!\cdots\!97}{33\!\cdots\!32}a^{30}-\frac{48\!\cdots\!71}{51\!\cdots\!24}a^{29}+\frac{67\!\cdots\!33}{33\!\cdots\!32}a^{28}+\frac{25\!\cdots\!69}{15\!\cdots\!44}a^{27}-\frac{17\!\cdots\!61}{49\!\cdots\!92}a^{26}-\frac{13\!\cdots\!73}{79\!\cdots\!72}a^{25}+\frac{10\!\cdots\!91}{31\!\cdots\!88}a^{24}+\frac{16\!\cdots\!83}{15\!\cdots\!36}a^{23}-\frac{70\!\cdots\!25}{31\!\cdots\!88}a^{22}-\frac{38\!\cdots\!45}{79\!\cdots\!72}a^{21}+\frac{30\!\cdots\!85}{31\!\cdots\!88}a^{20}+\frac{11\!\cdots\!75}{79\!\cdots\!72}a^{19}-\frac{70\!\cdots\!43}{24\!\cdots\!96}a^{18}-\frac{43\!\cdots\!67}{15\!\cdots\!44}a^{17}+\frac{16\!\cdots\!25}{31\!\cdots\!88}a^{16}+\frac{64\!\cdots\!85}{15\!\cdots\!44}a^{15}-\frac{90\!\cdots\!83}{31\!\cdots\!88}a^{14}-\frac{58\!\cdots\!27}{39\!\cdots\!36}a^{13}-\frac{75\!\cdots\!75}{15\!\cdots\!44}a^{12}+\frac{11\!\cdots\!59}{39\!\cdots\!36}a^{11}-\frac{27\!\cdots\!55}{79\!\cdots\!72}a^{10}+\frac{50\!\cdots\!71}{49\!\cdots\!92}a^{9}-\frac{86\!\cdots\!67}{39\!\cdots\!36}a^{8}+\frac{21\!\cdots\!67}{16\!\cdots\!44}a^{7}-\frac{18\!\cdots\!01}{19\!\cdots\!68}a^{6}+\frac{13\!\cdots\!73}{24\!\cdots\!96}a^{5}-\frac{12\!\cdots\!77}{99\!\cdots\!84}a^{4}+\frac{20\!\cdots\!17}{24\!\cdots\!96}a^{3}+\frac{15\!\cdots\!03}{49\!\cdots\!92}a^{2}+\frac{26\!\cdots\!51}{62\!\cdots\!24}a+\frac{19\!\cdots\!61}{24\!\cdots\!96}$, $\frac{11\!\cdots\!97}{11\!\cdots\!68}a^{31}-\frac{59\!\cdots\!13}{10\!\cdots\!88}a^{30}-\frac{34\!\cdots\!45}{11\!\cdots\!68}a^{29}+\frac{23\!\cdots\!81}{10\!\cdots\!88}a^{28}+\frac{40\!\cdots\!03}{11\!\cdots\!32}a^{27}-\frac{11\!\cdots\!33}{28\!\cdots\!92}a^{26}-\frac{19\!\cdots\!97}{11\!\cdots\!68}a^{25}+\frac{45\!\cdots\!49}{11\!\cdots\!68}a^{24}-\frac{43\!\cdots\!07}{87\!\cdots\!36}a^{23}-\frac{30\!\cdots\!11}{11\!\cdots\!68}a^{22}+\frac{13\!\cdots\!15}{11\!\cdots\!68}a^{21}+\frac{13\!\cdots\!63}{11\!\cdots\!68}a^{20}-\frac{43\!\cdots\!91}{57\!\cdots\!84}a^{19}-\frac{20\!\cdots\!33}{57\!\cdots\!84}a^{18}+\frac{33\!\cdots\!67}{11\!\cdots\!68}a^{17}+\frac{82\!\cdots\!01}{11\!\cdots\!68}a^{16}-\frac{67\!\cdots\!59}{11\!\cdots\!68}a^{15}-\frac{10\!\cdots\!89}{11\!\cdots\!68}a^{14}-\frac{33\!\cdots\!93}{14\!\cdots\!96}a^{13}+\frac{12\!\cdots\!77}{57\!\cdots\!84}a^{12}+\frac{32\!\cdots\!07}{14\!\cdots\!96}a^{11}-\frac{16\!\cdots\!45}{28\!\cdots\!92}a^{10}+\frac{11\!\cdots\!99}{14\!\cdots\!96}a^{9}-\frac{21\!\cdots\!11}{14\!\cdots\!96}a^{8}+\frac{40\!\cdots\!69}{71\!\cdots\!48}a^{7}-\frac{13\!\cdots\!31}{71\!\cdots\!48}a^{6}+\frac{84\!\cdots\!41}{17\!\cdots\!12}a^{5}-\frac{23\!\cdots\!77}{35\!\cdots\!24}a^{4}-\frac{47\!\cdots\!57}{44\!\cdots\!28}a^{3}-\frac{21\!\cdots\!87}{29\!\cdots\!92}a^{2}+\frac{39\!\cdots\!01}{89\!\cdots\!56}a-\frac{72\!\cdots\!15}{89\!\cdots\!56}$, $\frac{89\!\cdots\!27}{37\!\cdots\!32}a^{31}-\frac{10\!\cdots\!49}{21\!\cdots\!64}a^{30}-\frac{11\!\cdots\!93}{11\!\cdots\!72}a^{29}+\frac{39\!\cdots\!93}{21\!\cdots\!64}a^{28}+\frac{94\!\cdots\!21}{57\!\cdots\!88}a^{27}-\frac{29\!\cdots\!57}{92\!\cdots\!08}a^{26}-\frac{62\!\cdots\!03}{37\!\cdots\!32}a^{25}+\frac{28\!\cdots\!41}{92\!\cdots\!08}a^{24}+\frac{31\!\cdots\!89}{28\!\cdots\!64}a^{23}-\frac{91\!\cdots\!17}{46\!\cdots\!04}a^{22}-\frac{18\!\cdots\!77}{37\!\cdots\!32}a^{21}+\frac{39\!\cdots\!41}{46\!\cdots\!04}a^{20}+\frac{71\!\cdots\!49}{46\!\cdots\!04}a^{19}-\frac{46\!\cdots\!73}{18\!\cdots\!16}a^{18}-\frac{11\!\cdots\!25}{37\!\cdots\!32}a^{17}+\frac{85\!\cdots\!89}{18\!\cdots\!16}a^{16}+\frac{17\!\cdots\!19}{37\!\cdots\!32}a^{15}-\frac{15\!\cdots\!49}{92\!\cdots\!08}a^{14}-\frac{27\!\cdots\!69}{18\!\cdots\!16}a^{13}-\frac{17\!\cdots\!49}{23\!\cdots\!52}a^{12}+\frac{25\!\cdots\!47}{92\!\cdots\!08}a^{11}-\frac{33\!\cdots\!69}{11\!\cdots\!76}a^{10}+\frac{45\!\cdots\!19}{46\!\cdots\!04}a^{9}-\frac{15\!\cdots\!79}{19\!\cdots\!16}a^{8}+\frac{31\!\cdots\!09}{23\!\cdots\!52}a^{7}+\frac{51\!\cdots\!31}{57\!\cdots\!88}a^{6}+\frac{68\!\cdots\!33}{11\!\cdots\!76}a^{5}+\frac{31\!\cdots\!07}{72\!\cdots\!36}a^{4}+\frac{59\!\cdots\!37}{57\!\cdots\!88}a^{3}+\frac{41\!\cdots\!97}{72\!\cdots\!36}a^{2}+\frac{29\!\cdots\!43}{47\!\cdots\!04}a+\frac{55\!\cdots\!93}{45\!\cdots\!46}$, $\frac{45\!\cdots\!29}{18\!\cdots\!72}a^{31}-\frac{24\!\cdots\!91}{53\!\cdots\!72}a^{30}-\frac{57\!\cdots\!95}{59\!\cdots\!12}a^{29}+\frac{96\!\cdots\!55}{53\!\cdots\!72}a^{28}+\frac{77\!\cdots\!39}{46\!\cdots\!68}a^{27}-\frac{14\!\cdots\!75}{46\!\cdots\!68}a^{26}-\frac{32\!\cdots\!05}{18\!\cdots\!72}a^{25}+\frac{28\!\cdots\!17}{92\!\cdots\!36}a^{24}+\frac{16\!\cdots\!31}{14\!\cdots\!44}a^{23}-\frac{17\!\cdots\!85}{92\!\cdots\!36}a^{22}-\frac{51\!\cdots\!29}{97\!\cdots\!88}a^{21}+\frac{76\!\cdots\!89}{92\!\cdots\!36}a^{20}+\frac{37\!\cdots\!21}{23\!\cdots\!84}a^{19}-\frac{22\!\cdots\!95}{92\!\cdots\!36}a^{18}-\frac{61\!\cdots\!39}{18\!\cdots\!72}a^{17}+\frac{10\!\cdots\!83}{23\!\cdots\!84}a^{16}+\frac{50\!\cdots\!15}{97\!\cdots\!88}a^{15}-\frac{13\!\cdots\!13}{92\!\cdots\!36}a^{14}-\frac{14\!\cdots\!31}{92\!\cdots\!36}a^{13}-\frac{39\!\cdots\!51}{46\!\cdots\!68}a^{12}+\frac{12\!\cdots\!97}{46\!\cdots\!68}a^{11}-\frac{63\!\cdots\!79}{23\!\cdots\!84}a^{10}+\frac{22\!\cdots\!97}{23\!\cdots\!84}a^{9}-\frac{16\!\cdots\!37}{11\!\cdots\!92}a^{8}+\frac{15\!\cdots\!39}{11\!\cdots\!92}a^{7}+\frac{10\!\cdots\!05}{57\!\cdots\!96}a^{6}+\frac{34\!\cdots\!19}{57\!\cdots\!96}a^{5}+\frac{20\!\cdots\!71}{28\!\cdots\!48}a^{4}+\frac{30\!\cdots\!87}{28\!\cdots\!48}a^{3}+\frac{11\!\cdots\!79}{14\!\cdots\!24}a^{2}+\frac{91\!\cdots\!57}{14\!\cdots\!24}a+\frac{92\!\cdots\!09}{72\!\cdots\!12}$, $\frac{85\!\cdots\!83}{18\!\cdots\!72}a^{31}-\frac{14\!\cdots\!51}{21\!\cdots\!88}a^{30}-\frac{10\!\cdots\!59}{59\!\cdots\!12}a^{29}+\frac{55\!\cdots\!67}{21\!\cdots\!88}a^{28}+\frac{29\!\cdots\!79}{92\!\cdots\!36}a^{27}-\frac{19\!\cdots\!73}{46\!\cdots\!68}a^{26}-\frac{61\!\cdots\!91}{18\!\cdots\!72}a^{25}+\frac{74\!\cdots\!33}{18\!\cdots\!72}a^{24}+\frac{31\!\cdots\!01}{14\!\cdots\!44}a^{23}-\frac{43\!\cdots\!47}{18\!\cdots\!72}a^{22}-\frac{99\!\cdots\!03}{97\!\cdots\!88}a^{21}+\frac{16\!\cdots\!83}{18\!\cdots\!72}a^{20}+\frac{14\!\cdots\!85}{46\!\cdots\!68}a^{19}-\frac{20\!\cdots\!81}{92\!\cdots\!36}a^{18}-\frac{12\!\cdots\!95}{18\!\cdots\!72}a^{17}+\frac{45\!\cdots\!13}{18\!\cdots\!72}a^{16}+\frac{99\!\cdots\!67}{97\!\cdots\!88}a^{15}+\frac{24\!\cdots\!55}{30\!\cdots\!52}a^{14}-\frac{23\!\cdots\!45}{92\!\cdots\!36}a^{13}-\frac{30\!\cdots\!53}{92\!\cdots\!36}a^{12}+\frac{13\!\cdots\!49}{46\!\cdots\!68}a^{11}-\frac{15\!\cdots\!77}{46\!\cdots\!68}a^{10}+\frac{45\!\cdots\!83}{23\!\cdots\!84}a^{9}+\frac{65\!\cdots\!91}{23\!\cdots\!84}a^{8}+\frac{42\!\cdots\!71}{11\!\cdots\!92}a^{7}+\frac{12\!\cdots\!49}{11\!\cdots\!92}a^{6}+\frac{15\!\cdots\!45}{57\!\cdots\!96}a^{5}+\frac{21\!\cdots\!29}{57\!\cdots\!96}a^{4}+\frac{19\!\cdots\!43}{28\!\cdots\!48}a^{3}+\frac{16\!\cdots\!61}{28\!\cdots\!48}a^{2}+\frac{76\!\cdots\!31}{14\!\cdots\!24}a+\frac{15\!\cdots\!15}{14\!\cdots\!24}$, $\frac{88\!\cdots\!29}{18\!\cdots\!72}a^{31}-\frac{14\!\cdots\!13}{21\!\cdots\!88}a^{30}-\frac{10\!\cdots\!89}{59\!\cdots\!12}a^{29}+\frac{51\!\cdots\!97}{21\!\cdots\!88}a^{28}+\frac{28\!\cdots\!05}{92\!\cdots\!36}a^{27}-\frac{42\!\cdots\!67}{11\!\cdots\!92}a^{26}-\frac{56\!\cdots\!05}{18\!\cdots\!72}a^{25}+\frac{54\!\cdots\!79}{18\!\cdots\!72}a^{24}+\frac{28\!\cdots\!39}{14\!\cdots\!44}a^{23}-\frac{23\!\cdots\!69}{18\!\cdots\!72}a^{22}-\frac{81\!\cdots\!25}{97\!\cdots\!88}a^{21}+\frac{32\!\cdots\!33}{18\!\cdots\!72}a^{20}+\frac{10\!\cdots\!45}{46\!\cdots\!68}a^{19}+\frac{91\!\cdots\!43}{92\!\cdots\!36}a^{18}-\frac{75\!\cdots\!85}{18\!\cdots\!72}a^{17}-\frac{13\!\cdots\!53}{18\!\cdots\!72}a^{16}+\frac{60\!\cdots\!37}{97\!\cdots\!88}a^{15}+\frac{51\!\cdots\!85}{18\!\cdots\!72}a^{14}-\frac{18\!\cdots\!67}{92\!\cdots\!36}a^{13}-\frac{48\!\cdots\!41}{92\!\cdots\!36}a^{12}-\frac{33\!\cdots\!85}{46\!\cdots\!68}a^{11}-\frac{10\!\cdots\!19}{46\!\cdots\!68}a^{10}+\frac{67\!\cdots\!37}{23\!\cdots\!84}a^{9}-\frac{16\!\cdots\!09}{23\!\cdots\!84}a^{8}+\frac{73\!\cdots\!13}{11\!\cdots\!92}a^{7}+\frac{13\!\cdots\!91}{11\!\cdots\!92}a^{6}+\frac{30\!\cdots\!19}{57\!\cdots\!96}a^{5}-\frac{41\!\cdots\!15}{57\!\cdots\!96}a^{4}+\frac{31\!\cdots\!85}{28\!\cdots\!48}a^{3}-\frac{31\!\cdots\!37}{28\!\cdots\!48}a^{2}+\frac{84\!\cdots\!81}{14\!\cdots\!24}a+\frac{13\!\cdots\!03}{14\!\cdots\!24}$, $\frac{13\!\cdots\!49}{18\!\cdots\!72}a^{31}-\frac{35\!\cdots\!27}{21\!\cdots\!88}a^{30}-\frac{16\!\cdots\!65}{59\!\cdots\!12}a^{29}+\frac{13\!\cdots\!55}{21\!\cdots\!88}a^{28}+\frac{44\!\cdots\!99}{92\!\cdots\!36}a^{27}-\frac{25\!\cdots\!37}{23\!\cdots\!84}a^{26}-\frac{14\!\cdots\!57}{30\!\cdots\!52}a^{25}+\frac{20\!\cdots\!89}{18\!\cdots\!72}a^{24}+\frac{45\!\cdots\!59}{14\!\cdots\!44}a^{23}-\frac{13\!\cdots\!75}{18\!\cdots\!72}a^{22}-\frac{13\!\cdots\!25}{97\!\cdots\!88}a^{21}+\frac{58\!\cdots\!99}{18\!\cdots\!72}a^{20}+\frac{19\!\cdots\!35}{46\!\cdots\!68}a^{19}-\frac{87\!\cdots\!97}{92\!\cdots\!36}a^{18}-\frac{14\!\cdots\!29}{18\!\cdots\!72}a^{17}+\frac{33\!\cdots\!89}{18\!\cdots\!72}a^{16}+\frac{10\!\cdots\!09}{97\!\cdots\!88}a^{15}-\frac{23\!\cdots\!89}{18\!\cdots\!72}a^{14}-\frac{41\!\cdots\!23}{92\!\cdots\!36}a^{13}-\frac{63\!\cdots\!99}{92\!\cdots\!36}a^{12}+\frac{44\!\cdots\!47}{46\!\cdots\!68}a^{11}-\frac{52\!\cdots\!61}{46\!\cdots\!68}a^{10}+\frac{70\!\cdots\!65}{23\!\cdots\!84}a^{9}-\frac{21\!\cdots\!79}{23\!\cdots\!84}a^{8}+\frac{42\!\cdots\!33}{11\!\cdots\!92}a^{7}-\frac{84\!\cdots\!83}{11\!\cdots\!92}a^{6}+\frac{65\!\cdots\!59}{57\!\cdots\!96}a^{5}-\frac{11\!\cdots\!17}{57\!\cdots\!96}a^{4}+\frac{26\!\cdots\!05}{28\!\cdots\!48}a^{3}-\frac{67\!\cdots\!63}{28\!\cdots\!48}a^{2}-\frac{33\!\cdots\!79}{14\!\cdots\!24}a-\frac{10\!\cdots\!75}{14\!\cdots\!24}$, $\frac{11\!\cdots\!55}{92\!\cdots\!36}a^{31}-\frac{74\!\cdots\!13}{21\!\cdots\!88}a^{30}-\frac{67\!\cdots\!37}{14\!\cdots\!28}a^{29}+\frac{28\!\cdots\!89}{21\!\cdots\!88}a^{28}+\frac{67\!\cdots\!47}{92\!\cdots\!36}a^{27}-\frac{84\!\cdots\!53}{36\!\cdots\!56}a^{26}-\frac{62\!\cdots\!57}{92\!\cdots\!36}a^{25}+\frac{42\!\cdots\!57}{18\!\cdots\!72}a^{24}+\frac{28\!\cdots\!53}{71\!\cdots\!72}a^{23}-\frac{27\!\cdots\!67}{18\!\cdots\!72}a^{22}-\frac{37\!\cdots\!43}{25\!\cdots\!76}a^{21}+\frac{11\!\cdots\!03}{18\!\cdots\!72}a^{20}+\frac{13\!\cdots\!39}{46\!\cdots\!68}a^{19}-\frac{86\!\cdots\!79}{46\!\cdots\!68}a^{18}-\frac{51\!\cdots\!05}{46\!\cdots\!68}a^{17}+\frac{64\!\cdots\!43}{18\!\cdots\!72}a^{16}-\frac{89\!\cdots\!89}{24\!\cdots\!72}a^{15}-\frac{47\!\cdots\!61}{18\!\cdots\!72}a^{14}-\frac{26\!\cdots\!09}{46\!\cdots\!68}a^{13}+\frac{28\!\cdots\!63}{92\!\cdots\!36}a^{12}+\frac{86\!\cdots\!57}{57\!\cdots\!96}a^{11}-\frac{13\!\cdots\!05}{46\!\cdots\!68}a^{10}+\frac{76\!\cdots\!61}{11\!\cdots\!92}a^{9}-\frac{11\!\cdots\!49}{23\!\cdots\!84}a^{8}+\frac{23\!\cdots\!77}{28\!\cdots\!48}a^{7}-\frac{60\!\cdots\!99}{11\!\cdots\!92}a^{6}+\frac{11\!\cdots\!73}{28\!\cdots\!48}a^{5}-\frac{94\!\cdots\!91}{57\!\cdots\!96}a^{4}+\frac{14\!\cdots\!75}{18\!\cdots\!28}a^{3}-\frac{50\!\cdots\!23}{28\!\cdots\!48}a^{2}+\frac{42\!\cdots\!31}{72\!\cdots\!12}a-\frac{52\!\cdots\!21}{14\!\cdots\!24}$, $\frac{63\!\cdots\!75}{18\!\cdots\!72}a^{31}-\frac{23\!\cdots\!59}{33\!\cdots\!92}a^{30}-\frac{79\!\cdots\!89}{59\!\cdots\!12}a^{29}+\frac{72\!\cdots\!23}{26\!\cdots\!36}a^{28}+\frac{10\!\cdots\!91}{46\!\cdots\!68}a^{27}-\frac{21\!\cdots\!91}{46\!\cdots\!68}a^{26}-\frac{43\!\cdots\!59}{18\!\cdots\!72}a^{25}+\frac{43\!\cdots\!77}{92\!\cdots\!36}a^{24}+\frac{22\!\cdots\!57}{14\!\cdots\!44}a^{23}-\frac{27\!\cdots\!21}{92\!\cdots\!36}a^{22}-\frac{68\!\cdots\!55}{97\!\cdots\!88}a^{21}+\frac{11\!\cdots\!29}{92\!\cdots\!36}a^{20}+\frac{49\!\cdots\!11}{23\!\cdots\!84}a^{19}-\frac{35\!\cdots\!49}{92\!\cdots\!36}a^{18}-\frac{77\!\cdots\!89}{18\!\cdots\!72}a^{17}+\frac{33\!\cdots\!87}{46\!\cdots\!68}a^{16}+\frac{62\!\cdots\!93}{97\!\cdots\!88}a^{15}-\frac{33\!\cdots\!09}{92\!\cdots\!36}a^{14}-\frac{19\!\cdots\!85}{92\!\cdots\!36}a^{13}-\frac{38\!\cdots\!13}{46\!\cdots\!68}a^{12}+\frac{19\!\cdots\!87}{46\!\cdots\!68}a^{11}-\frac{10\!\cdots\!11}{23\!\cdots\!84}a^{10}+\frac{32\!\cdots\!23}{23\!\cdots\!84}a^{9}-\frac{21\!\cdots\!71}{11\!\cdots\!92}a^{8}+\frac{21\!\cdots\!81}{11\!\cdots\!92}a^{7}+\frac{69\!\cdots\!25}{57\!\cdots\!96}a^{6}+\frac{41\!\cdots\!49}{57\!\cdots\!96}a^{5}+\frac{78\!\cdots\!53}{28\!\cdots\!48}a^{4}+\frac{31\!\cdots\!49}{28\!\cdots\!48}a^{3}+\frac{50\!\cdots\!19}{14\!\cdots\!24}a^{2}+\frac{77\!\cdots\!63}{14\!\cdots\!24}a+\frac{13\!\cdots\!91}{72\!\cdots\!12}$, $\frac{30\!\cdots\!73}{71\!\cdots\!72}a^{31}-\frac{34\!\cdots\!03}{40\!\cdots\!44}a^{30}-\frac{37\!\cdots\!71}{22\!\cdots\!12}a^{29}+\frac{13\!\cdots\!95}{40\!\cdots\!44}a^{28}+\frac{63\!\cdots\!41}{22\!\cdots\!96}a^{27}-\frac{10\!\cdots\!05}{17\!\cdots\!68}a^{26}-\frac{20\!\cdots\!53}{71\!\cdots\!72}a^{25}+\frac{10\!\cdots\!91}{17\!\cdots\!68}a^{24}+\frac{13\!\cdots\!35}{71\!\cdots\!72}a^{23}-\frac{16\!\cdots\!73}{44\!\cdots\!92}a^{22}-\frac{33\!\cdots\!21}{37\!\cdots\!88}a^{21}+\frac{69\!\cdots\!95}{44\!\cdots\!92}a^{20}+\frac{23\!\cdots\!21}{88\!\cdots\!84}a^{19}-\frac{16\!\cdots\!91}{35\!\cdots\!36}a^{18}-\frac{37\!\cdots\!95}{71\!\cdots\!72}a^{17}+\frac{31\!\cdots\!91}{35\!\cdots\!36}a^{16}+\frac{30\!\cdots\!83}{37\!\cdots\!88}a^{15}-\frac{77\!\cdots\!41}{17\!\cdots\!68}a^{14}-\frac{94\!\cdots\!39}{35\!\cdots\!36}a^{13}-\frac{96\!\cdots\!33}{88\!\cdots\!84}a^{12}+\frac{90\!\cdots\!77}{17\!\cdots\!68}a^{11}-\frac{11\!\cdots\!87}{22\!\cdots\!96}a^{10}+\frac{15\!\cdots\!21}{88\!\cdots\!84}a^{9}-\frac{42\!\cdots\!53}{22\!\cdots\!96}a^{8}+\frac{99\!\cdots\!11}{44\!\cdots\!92}a^{7}+\frac{56\!\cdots\!51}{11\!\cdots\!48}a^{6}+\frac{18\!\cdots\!39}{22\!\cdots\!96}a^{5}+\frac{21\!\cdots\!45}{55\!\cdots\!24}a^{4}+\frac{13\!\cdots\!23}{11\!\cdots\!48}a^{3}+\frac{58\!\cdots\!79}{13\!\cdots\!56}a^{2}+\frac{30\!\cdots\!41}{55\!\cdots\!24}a+\frac{18\!\cdots\!57}{69\!\cdots\!28}$, $\frac{33\!\cdots\!79}{46\!\cdots\!68}a^{31}-\frac{42\!\cdots\!61}{10\!\cdots\!44}a^{30}-\frac{34\!\cdots\!81}{14\!\cdots\!28}a^{29}+\frac{16\!\cdots\!43}{10\!\cdots\!44}a^{28}+\frac{32\!\cdots\!29}{11\!\cdots\!92}a^{27}-\frac{12\!\cdots\!55}{46\!\cdots\!68}a^{26}-\frac{60\!\cdots\!57}{46\!\cdots\!68}a^{25}+\frac{24\!\cdots\!01}{92\!\cdots\!36}a^{24}-\frac{70\!\cdots\!51}{17\!\cdots\!68}a^{23}-\frac{16\!\cdots\!85}{92\!\cdots\!36}a^{22}+\frac{69\!\cdots\!77}{75\!\cdots\!96}a^{21}+\frac{70\!\cdots\!21}{92\!\cdots\!36}a^{20}-\frac{27\!\cdots\!97}{46\!\cdots\!68}a^{19}-\frac{10\!\cdots\!37}{46\!\cdots\!68}a^{18}+\frac{26\!\cdots\!29}{11\!\cdots\!92}a^{17}+\frac{38\!\cdots\!15}{92\!\cdots\!36}a^{16}-\frac{11\!\cdots\!87}{24\!\cdots\!72}a^{15}-\frac{41\!\cdots\!19}{92\!\cdots\!36}a^{14}-\frac{28\!\cdots\!27}{46\!\cdots\!68}a^{13}+\frac{96\!\cdots\!71}{72\!\cdots\!12}a^{12}+\frac{16\!\cdots\!01}{14\!\cdots\!24}a^{11}-\frac{96\!\cdots\!17}{23\!\cdots\!84}a^{10}+\frac{79\!\cdots\!35}{11\!\cdots\!92}a^{9}-\frac{63\!\cdots\!25}{57\!\cdots\!96}a^{8}+\frac{20\!\cdots\!07}{28\!\cdots\!48}a^{7}-\frac{75\!\cdots\!53}{57\!\cdots\!96}a^{6}+\frac{10\!\cdots\!15}{28\!\cdots\!48}a^{5}-\frac{31\!\cdots\!83}{72\!\cdots\!12}a^{4}+\frac{18\!\cdots\!81}{36\!\cdots\!56}a^{3}-\frac{61\!\cdots\!03}{14\!\cdots\!24}a^{2}+\frac{13\!\cdots\!29}{72\!\cdots\!12}a-\frac{41\!\cdots\!75}{90\!\cdots\!64}$, $\frac{15\!\cdots\!43}{92\!\cdots\!36}a^{31}-\frac{42\!\cdots\!11}{10\!\cdots\!44}a^{30}-\frac{19\!\cdots\!99}{29\!\cdots\!56}a^{29}+\frac{16\!\cdots\!25}{10\!\cdots\!44}a^{28}+\frac{51\!\cdots\!95}{46\!\cdots\!68}a^{27}-\frac{12\!\cdots\!61}{46\!\cdots\!68}a^{26}-\frac{10\!\cdots\!75}{92\!\cdots\!36}a^{25}+\frac{24\!\cdots\!73}{92\!\cdots\!36}a^{24}+\frac{51\!\cdots\!13}{71\!\cdots\!72}a^{23}-\frac{15\!\cdots\!89}{92\!\cdots\!36}a^{22}-\frac{15\!\cdots\!31}{48\!\cdots\!44}a^{21}+\frac{69\!\cdots\!21}{92\!\cdots\!36}a^{20}+\frac{51\!\cdots\!77}{57\!\cdots\!96}a^{19}-\frac{52\!\cdots\!71}{23\!\cdots\!84}a^{18}-\frac{14\!\cdots\!07}{92\!\cdots\!36}a^{17}+\frac{40\!\cdots\!41}{92\!\cdots\!36}a^{16}+\frac{11\!\cdots\!83}{48\!\cdots\!44}a^{15}-\frac{28\!\cdots\!47}{92\!\cdots\!36}a^{14}-\frac{47\!\cdots\!77}{46\!\cdots\!68}a^{13}-\frac{18\!\cdots\!25}{23\!\cdots\!84}a^{12}+\frac{51\!\cdots\!81}{23\!\cdots\!84}a^{11}-\frac{64\!\cdots\!69}{23\!\cdots\!84}a^{10}+\frac{84\!\cdots\!03}{11\!\cdots\!92}a^{9}-\frac{24\!\cdots\!05}{90\!\cdots\!64}a^{8}+\frac{50\!\cdots\!15}{57\!\cdots\!96}a^{7}-\frac{13\!\cdots\!49}{57\!\cdots\!96}a^{6}+\frac{80\!\cdots\!97}{28\!\cdots\!48}a^{5}-\frac{93\!\cdots\!73}{14\!\cdots\!24}a^{4}+\frac{39\!\cdots\!27}{14\!\cdots\!24}a^{3}-\frac{98\!\cdots\!47}{14\!\cdots\!24}a^{2}-\frac{80\!\cdots\!65}{72\!\cdots\!12}a-\frac{37\!\cdots\!67}{36\!\cdots\!56}$, $\frac{16\!\cdots\!97}{92\!\cdots\!36}a^{31}-\frac{27\!\cdots\!97}{10\!\cdots\!44}a^{30}-\frac{90\!\cdots\!91}{29\!\cdots\!56}a^{29}+\frac{10\!\cdots\!49}{10\!\cdots\!44}a^{28}-\frac{81\!\cdots\!91}{23\!\cdots\!84}a^{27}-\frac{41\!\cdots\!01}{23\!\cdots\!84}a^{26}+\frac{13\!\cdots\!11}{92\!\cdots\!36}a^{25}+\frac{17\!\cdots\!51}{92\!\cdots\!36}a^{24}-\frac{13\!\cdots\!55}{71\!\cdots\!72}a^{23}-\frac{11\!\cdots\!85}{92\!\cdots\!36}a^{22}+\frac{66\!\cdots\!17}{48\!\cdots\!44}a^{21}+\frac{54\!\cdots\!21}{92\!\cdots\!36}a^{20}-\frac{29\!\cdots\!51}{46\!\cdots\!68}a^{19}-\frac{87\!\cdots\!77}{46\!\cdots\!68}a^{18}+\frac{18\!\cdots\!15}{92\!\cdots\!36}a^{17}+\frac{36\!\cdots\!43}{92\!\cdots\!36}a^{16}-\frac{19\!\cdots\!29}{48\!\cdots\!44}a^{15}-\frac{57\!\cdots\!47}{92\!\cdots\!36}a^{14}+\frac{54\!\cdots\!03}{72\!\cdots\!12}a^{13}+\frac{70\!\cdots\!59}{46\!\cdots\!68}a^{12}+\frac{25\!\cdots\!97}{23\!\cdots\!84}a^{11}-\frac{70\!\cdots\!11}{23\!\cdots\!84}a^{10}+\frac{80\!\cdots\!97}{28\!\cdots\!48}a^{9}-\frac{92\!\cdots\!13}{11\!\cdots\!92}a^{8}-\frac{11\!\cdots\!45}{94\!\cdots\!36}a^{7}-\frac{60\!\cdots\!25}{57\!\cdots\!96}a^{6}-\frac{68\!\cdots\!15}{36\!\cdots\!56}a^{5}-\frac{84\!\cdots\!83}{28\!\cdots\!48}a^{4}-\frac{44\!\cdots\!01}{14\!\cdots\!24}a^{3}-\frac{31\!\cdots\!61}{14\!\cdots\!24}a^{2}-\frac{15\!\cdots\!81}{36\!\cdots\!56}a-\frac{34\!\cdots\!93}{72\!\cdots\!12}$, $\frac{23\!\cdots\!15}{55\!\cdots\!88}a^{31}-\frac{28\!\cdots\!05}{32\!\cdots\!76}a^{30}-\frac{28\!\cdots\!89}{17\!\cdots\!48}a^{29}+\frac{11\!\cdots\!79}{32\!\cdots\!76}a^{28}+\frac{24\!\cdots\!63}{86\!\cdots\!92}a^{27}-\frac{41\!\cdots\!53}{69\!\cdots\!36}a^{26}-\frac{15\!\cdots\!03}{55\!\cdots\!88}a^{25}+\frac{83\!\cdots\!17}{13\!\cdots\!72}a^{24}+\frac{13\!\cdots\!17}{70\!\cdots\!16}a^{23}-\frac{54\!\cdots\!99}{13\!\cdots\!72}a^{22}-\frac{24\!\cdots\!03}{29\!\cdots\!52}a^{21}+\frac{23\!\cdots\!19}{13\!\cdots\!72}a^{20}+\frac{86\!\cdots\!99}{34\!\cdots\!68}a^{19}-\frac{14\!\cdots\!67}{27\!\cdots\!44}a^{18}-\frac{26\!\cdots\!69}{55\!\cdots\!88}a^{17}+\frac{27\!\cdots\!33}{27\!\cdots\!44}a^{16}+\frac{21\!\cdots\!65}{29\!\cdots\!52}a^{15}-\frac{56\!\cdots\!19}{86\!\cdots\!92}a^{14}-\frac{72\!\cdots\!45}{27\!\cdots\!44}a^{13}-\frac{87\!\cdots\!91}{13\!\cdots\!72}a^{12}+\frac{75\!\cdots\!55}{13\!\cdots\!72}a^{11}-\frac{20\!\cdots\!51}{34\!\cdots\!68}a^{10}+\frac{11\!\cdots\!35}{69\!\cdots\!36}a^{9}-\frac{12\!\cdots\!41}{34\!\cdots\!68}a^{8}+\frac{70\!\cdots\!85}{34\!\cdots\!68}a^{7}-\frac{85\!\cdots\!15}{43\!\cdots\!96}a^{6}+\frac{10\!\cdots\!37}{17\!\cdots\!84}a^{5}-\frac{29\!\cdots\!13}{86\!\cdots\!92}a^{4}+\frac{40\!\cdots\!37}{86\!\cdots\!92}a^{3}-\frac{77\!\cdots\!57}{21\!\cdots\!48}a^{2}-\frac{66\!\cdots\!57}{43\!\cdots\!96}a-\frac{71\!\cdots\!41}{21\!\cdots\!48}$, $\frac{48\!\cdots\!23}{16\!\cdots\!52}a^{31}-\frac{72\!\cdots\!31}{21\!\cdots\!88}a^{30}-\frac{64\!\cdots\!47}{54\!\cdots\!92}a^{29}+\frac{28\!\cdots\!95}{21\!\cdots\!88}a^{28}+\frac{18\!\cdots\!15}{83\!\cdots\!76}a^{27}-\frac{48\!\cdots\!09}{20\!\cdots\!44}a^{26}-\frac{36\!\cdots\!61}{15\!\cdots\!32}a^{25}+\frac{38\!\cdots\!67}{16\!\cdots\!52}a^{24}+\frac{22\!\cdots\!85}{12\!\cdots\!04}a^{23}-\frac{24\!\cdots\!85}{16\!\cdots\!52}a^{22}-\frac{74\!\cdots\!51}{88\!\cdots\!08}a^{21}+\frac{10\!\cdots\!33}{16\!\cdots\!52}a^{20}+\frac{15\!\cdots\!37}{52\!\cdots\!36}a^{19}-\frac{15\!\cdots\!03}{83\!\cdots\!76}a^{18}-\frac{11\!\cdots\!03}{16\!\cdots\!52}a^{17}+\frac{61\!\cdots\!15}{16\!\cdots\!52}a^{16}+\frac{10\!\cdots\!27}{88\!\cdots\!08}a^{15}+\frac{73\!\cdots\!53}{16\!\cdots\!52}a^{14}-\frac{19\!\cdots\!11}{83\!\cdots\!76}a^{13}-\frac{18\!\cdots\!45}{83\!\cdots\!76}a^{12}+\frac{14\!\cdots\!33}{41\!\cdots\!88}a^{11}-\frac{16\!\cdots\!09}{38\!\cdots\!08}a^{10}+\frac{16\!\cdots\!45}{20\!\cdots\!44}a^{9}+\frac{18\!\cdots\!03}{20\!\cdots\!44}a^{8}+\frac{12\!\cdots\!31}{10\!\cdots\!72}a^{7}+\frac{13\!\cdots\!43}{10\!\cdots\!72}a^{6}+\frac{16\!\cdots\!19}{52\!\cdots\!36}a^{5}+\frac{20\!\cdots\!85}{52\!\cdots\!36}a^{4}+\frac{90\!\cdots\!63}{26\!\cdots\!68}a^{3}+\frac{85\!\cdots\!99}{26\!\cdots\!68}a^{2}+\frac{15\!\cdots\!43}{11\!\cdots\!44}a-\frac{24\!\cdots\!49}{13\!\cdots\!84}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 21293667756063.02 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 21293667756063.02 \cdot 600}{6\cdot\sqrt{2553263220825544945190771147906377486172160000000000000000}}\cr\approx \mathstrut & 0.248645482139067 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.8.0.1}{8} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{16}$ | ${\href{/padicField/23.2.0.1}{2} }^{16}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.1 | $x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
\(3\) | 3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ | |
\(5\) | 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(29\) | 29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(1289\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $4$ | $2$ | $2$ | $2$ |